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APPENDIX A

COORDINATE SYSTEMS

A. 1 Summary

Judicious choice of a coordinate system is of primary importance

in the analysis of two-body motion. Three basic systems, each related

to the space vehicle's nominal, or reference, trajectory, are defined

in this appendix. The designations of the three basic systems are:

1. Reference trajectory stationary coordinate system

2. Reference trajectory local vertical coordinate system

3. Reference trajectory flight path coordinate system

The orientation of these three systems is specified with respect to

the conventional heliocentric ecliptic coordinate system, which is also

defined.

/

A. 2 Heliocentric Ecliptic Coordinate System

The heliocentric ecliptic axis system is one of the standard sys-

tems in celestial mechanics. Its origin is at the center of the sun.

Its axes are designatedx E, YE' and z E. The x E andYE axes are in

the ecliptic plane. The x E - axis lies along the intersection of the

equatorial plane with the ecliptic plane, with the positive direction

being the direction of the sun from the earth at the time of the vernal

equinox (or the direction of the earth from the sun at the time of the

autumnal equinox}. The positive YE - axis is obtained by rotating the

positive x E -axis 90 ° in the direction of the earth's rotation about the

sun. The z E -axis is normal to the ecliptic plane and positive in the

direction of the angular momentum vector of the earth's motion with

respect to the sun.

.r



A. 3 Reference Trajectory Stationary Coordinate System

The reference trajectory stationary coordinate system, with axes

x, y, and z, is related to the nominal two-body path of the space vehicle

in the sun's gravitational field. The origin is at the center of the sun.

The x-y plane is the plane containing the vehicle's reference trajectory.

The positive x-axis is in the direction of perihelion from the sun. The

y-axis lies along the latus rectum; its positive direction is obtained by

rotating the positive x-axis 90 ° in the direction of the motion of the

vehicle around the sun. The positive z-axis is in the direction of the

angular momentum vector of the vehicle's motion relative to the sun.

The x, y, z axes may be located with respect to the XE, YE' ZE

axes by means of the three Euler angles fiE, iE' and _E" _E is the

longitude of the ascending node. It is the angle, measured in the

xE-Y E plane, between the xE-axis and the positive half of the line of

nodes. The line of nodes is the line of intersection between the ecliptic

plane and the reference trajectory plane. The ascending node, which

lies on the positive half of the line of nodes, is the point at which the

vehicle passes through the ecliptic plane in the direction of increasing

ZSO

i E is the inclination angle. It is the angle subtended at the

line of nodes between the reference trajectory plane and the ecliptic

plane. It is also the angle between the z-axis and the zE-axis. The

range of i E is 0 ° to 180 ° .

is the latitude of perihelion. It is the angle, measured in

the reference trajectory plane, between the positive half of the line of

nodes and the positive x-axis.

The sum of fie and _E is known as the longitude of perihelion and

is designated _bE. _bE is sometimes referred to as a "broken" angle

because its two constituent parts lie in different planes. _E may be

substituted for either fi or ¢_E in locating the x, y, z axes.

The angles fiE' iE' and ¢_ are illustrated in Fig. A. 1.
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A. 4 Reference Trajectory Local Vertical Coordinate System

The reference trajectory local vertical coordinate system, with

axes r, s, and z, has its origin at the center of the sun, and its positive

z direction lies along the angular momentum vector of the vehicle's

motion with respect to the sun. In these two respects it is the same

as the reference trajectory stationary system. Also, the r-s plane

coincides With the x-y plane. The two systems differ in that the r and

s axes rotate in the reference trajectory plane, with the positive direc-

tion of the r-axis at any given time lying in the direction of the nominal

position of the vehicle at that time. The positive s-axis is 90 ° "ahead"

(i. e., rotated in the direction of vehicle motion) of the positive r-axis.

The angle between the r-axis and the x-axis at any instant is the

true anomaly f. Thus, the local vertical system is rotating about the

z-axis with angular velocity {.

The positive r direction will be referred to as the radial direction;

similarly, the positive s direction is the transverse direction, and the

positive z direction is the orthogonal direction. The r direction is the

direction of the vehicle's local vertical in the sun's gravitational field.

Because of the way in which the axes are defined, the values of

s and z on a two-body reference trajectory are identically zero for all

values of time.

A. 5 Reference Trajectory Flight Path Coordinate System

The axes of the reference trajectory flight path coordinate system

are designated p, q, and z. Like the previous two reference trajectory

systems, this system has its origin at the center of the sun and its

positive z-axis in the direction of the angular momentum vector of the

vehicle's motion about the sun. The p-q plane is the reference trajec-

tory plane. The positive q-axis is parallel to the relative velocity

vector of the vehicle's nominal motion with respect to the sun. The

positive p-axis is 90 ° "behind" (i. e., rotated in the direction opposite

to the vehicle's motion about the sun). the positive q-axis.
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The angle between the s-axis and the q-axis_ is 7, the flight path

angle. The angle is positive when the positive q-axis lies between the

positive directions of the r and s axes. Since the s-axis represents the

"horizontal" direction in the reference trajectory plane, 7 is the

inclination of the flight path to the horizontal.

The angle between the p-axis and the x-axis is g; it is equal to

the difference between f and "y. The angular velocity of the p, q, z

coordinate system about the z-axis is _ , which is equal to (f - :y).

The orientations of the axes of the three reference trajectory

coordinate systems in the reference trajectory plane are shown in

Fig. A. 2.
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REFERENCE

TRAJECTORY

S

Y
V

r
P

F
X

Fq is parallel to v.

F - attractive focus (cente_- of sun)

P - vehicle position on reference trajectory

r -- position vector
m

v -- Velocity vector

x,y -- stationary system coordinate axes

r,s - local vertical system coordinate axes

p,q - flight path system coordinate axes

f = <_ xFr = <_yFs = true anomaly

Y = <I rFp = <_ sFq = flight path angle

g = <IxFp = _jyFq = f-_,

Figure A.2 Orientations of Reference Trajectory Coordinate Systems
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APPENDIX B

CELESTIAL MECHANICS

B._ 1 Summary

Some of the more important relations in celestial mechanics are

stated, with particular emphasis on those applicable to elliptical

orbits. These relations form the foundation on which much of the

subsequent analysi s is based. Since all of this material is well

know n, no attempt is made to supply formal proofs of the equations

presented. Such proofs may be found in any standard textbook on this

subject, for example, in Chapters 1 and, 2 of Smart { 28 _

B. 2 Motion of a Small Mass in a Many-Body Gravitational Field

Figure B. 1 shows the relative positions of three bodies, P0' P'

and PI" The motion of P is to be investigated under the assumption

that the only forces acting on P are those due to the gravitational

effects of P0 and PI"

For a space vehicle on an interplanetary voyage, P0 represents

the sun, P represents the vehicle, and P1 normally represents one of

the planets.

The vector form of the equation of motion of P is

*_+ r_ r=. Gml {1.1..1._dl + I._ rl )
-- ' -- d 13 r 13

(B-l)



PI

,Po

£

P

lb.Po.P 1 -

P-

Po.Pl, -

_r.r1,d1 -

three bodies treated as hypothetical point.masses

body whose motion is being investigated

bodies whose masses affect the motion of P

position vectors

Figure B, 1 Vector Diagram for the Three-Body Problem
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The vectors r, r 1, and d 1 are the position vectors of Fig. B. 1,

with r, r 1, and d 1 being their respective magnitudes. _ is the inertial

acceleration vector of P with respect to P0"

The masses of P0" P' and P1 are m 0, m, and m 1, respectively,

The quantity p is defined by

=G (m 0 + m) (B-2)

where G is the constant of gravitation.

Since m 0 is the mass of the sun and m 1 is the mass of a planet,

which is very much smaller, the motion of P is due primarily to

P0" with P1 exerting a relatively minor effect (unless the magnitude

of r is much greater than that of dl). In astronomical parlance, the

force exerted by P1 on P is known as the r'disturbing force", and the

effect of P1 on the motion of P is known as a "perturbation".

In general, there may be many disturbing forces, due to planets

PI' P2' ....... ' P n" The vector equation of motion when there are

n disturbing forces is

r'+ P n (I 1_ r =-G _ m. d. + _ _-ri) (B-3)
r i=l i . d.3 r.3

1 _ 1 r'"

B. 3 Equations of Motion in Reference Trajectory Coordinate Systems

The vector Eq. (B-3) is a compact form for three component

equations, which can be written in any convenient coordinate system.

In this section the component equations will be written in the three

reference trajectory coordinate systems described in Appendix A..

_J
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In the x y z system,

r = x ux + y u + z u (B-4)-- -- --y --z

v= {_= xu + yu + z u (B-5)
-- -- --X --y --Z

a = r = x u + yu + z u (B-6)
- - -x -Y --z

The symbol u represents a unit vec,Cor, with the appended subscript

indicating its direction, v and a are, respectively, the inertial

velocity and the inertial acceleration of the body P.

2 2 y2 2r = x + + z (B-7)

d'21= (x-xi) 2 + (y-yi)2+ (z-zi) 2 (B-8)

2
= x.."_ga+ yi2 + z" 2 (B-9)ri 1

I
The three component equations of motion may be written in

matrix form as follows:

x

/ /xjr--_ Y

Z

n

= _ G iG__lm i

x - xi xi

Y- YiJ + 1--!-ri3 Yi

z - zi/ " zi

(B-10)

I0



In the r s z coordinate system, the projection of the vector r in

the r-s plane is designated p. The r-axis lies along the projection

of r in the r-s plane. The coordinate system rotates about the z-axis

with angular velocity f.

r = p u + z u (B-11)
-- --r -z

v = p u + p f u + z u (B-12)
- --r --s --z

a = ('_-p f2)u + (p'f'+ 2Pf)Us +z u (B-13)
_r _Z

2 2 2
r = p + z (B-14)

di2 = (p-pi)2 + si 2 + (z-zi)2 (B-15)

2 2 si 2 2ri = Pi + + z i (B-16)

The component equations are

/ 2/ l/0 = - G i=_ m i
p'f'+ 2p f + r3

z

D

-si + 1

z - zi zi

(B-17)

The p q z coordinate system rotates about the z-axis with angular

velocity _. The q-axis is parallel to the projection of v in the p-q

plane,
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r = p u + qu + z u (B-18)
- -p --q --z

v = (I_-q g) u + (el ÷ p g) Uq + _. u (B-19)- --p --z

= v u + z u (B-20)
q --q --z

The angular velocity g may be expressed in terms of p and q

by equating coefficients of u in (B-19) and (B-20),
--p

- q g = 0 (B-21)

= _ (B- 22)
q

The acceleration a is given by

a = - _v u ÷ _ u ÷ _'u (B-23)
- q --p q --q --z

P(PP÷qq)

q2

u
--p

+ [ PP'+q q_t" + P (I:] q-qP)2 ""] u + z u (]3-24)
--q --Z

q

12



The distance equations are

2 2 2 2
r =p +q +z (B-25)

d'21= {p-pi )2 + (q-qi)2 + (z-zi)2

2 2 2 2
ri = Pi + qi + zi

(B-26)

(B-27)

The equations of motion in the p q z system are

-P (P 1_,+ q Cl) \

q2

oo

pp+ q'q

q 2
q

n
=-GEm.

i=l 1 d:

P -Pi I

q - qi
1

+--3
ri

qi (B-28)
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B. 4 Two-Body Motion

When there are no disturbing forces, the motion of P is the

classic two-body motion, and the vector equation reduces to

"_+_ r=O
-- r'_ -- --3

(B- 29)

The acceleration vector and the position vector are now collinear.

Therefore, the motion of P must lie wholly within the plane deter-

mined by the position vector and the velocity vector existing at any

specified time.

The component equations of motion in the x y z coordinate sys-

tem are

ix//0/y = 0

z 0

(B-30)

If the axes are so chosen that z is perpendicular to the plane of the

two-body motion, z is always zero, and the motion of P is completely

described by the first two equations of (B-30}. The distance r is then

given by

2 2 2
r = x + y (B-31}

In the r s z coordinate system, p becomes equal to r for two-body

motion. The equations of motion in the trajectory plane are

14



(r:r:)1(r)(:)
\rf+2rf 0 ,, .

(B-32)

When the p q z coordinate system is used to describe the two-body

m orion,

2 2 2
r.=p +q (B-33)

The equations of motion in the trajectory plane are

/- P(PP+q[t) /Q q2

+

' ee ee

PP+qq + ,P(Pq- qP)

q q2

V (B-34)

B. 5 Integration of Equations of Two-Body Motion

The integration of the equations of two-body motion is most

easily accomplished by using (B-32). The lower equation of (B-32)

may be integrated directly, with the result

2i hr = (B-35)

where h, a constant, is the angular momentum of P per unit mass.
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To integrate the upper equation of (B-32), .f is substituted for t

as the independent variable, and the _ependent variable r is re-

placed by u, where

1
u =

r

In terms of u and f, the upper equation of (B-32) becomes

d 2 u + u _ (B-.,37)

d f2 h-_ ' '

The solution for r is

h 2

(B-38)
r = l+e cos (f _,)

where e and _ are constants of integration.

Equation (B-38) is the polar-coordinate form of the equation of

a general conic section, with the origin at one focus. The constant e is

the eccentricity of the conic. _, is the angle between the arbitrarily

chosen x-axis in the x-y plane and the major axis of the conic. If new

x and y axes are defined such that the new x-axis coincides with the

major axis of the conic, then the angle between the new axes and the old

axes is _, and (f - _) may be replaced by f in (B-38). The new angle f,

measured from the new x-axis, is the true anomaly.

B. 6 Orbital Elements

The component equations of (B-30), the general equations of

motion of the two-body problem, are three second-order linear differ-

ential equations, and consequently their complete solution involves

16



six arbitrary constants. The six constants may be the three components

of position and the three components of velocity occurring at a specified

time, or they may be three components of position at each of two speci-

fied times. There are many other groupings of six constants that may

be used.

A grouping that is widely used in celestial mechanics is one known

as the six orbital elements. These elements are:

lo a,

2. e,

3. _,

4. i,

6. t o ,

The semi-major axis of the conic section

The eccentricity of the conic section

The longitude of the ascending node

The inclination of the trajectory plane

The latitude of perihelion

The time of perihelion passage

The elements a and e determine the size and shape, respectively, of

the conic section.

The angles _ and i determine the orientation of the trajectory

plane, and angle _ locates the axes of the conic section in the trajectory

plane. If the standard coordinate system to which the three angles are

referred is the heliocentric ecliptic system, the three become _E' iE'

and _E' which are defined in Section A. 3 and illustrated in Fig. A.i.

The element tO relates position on the trajectory to some arbi-

trarily chosen time reference, known as the epoch; tO is the time, re-

lative to the epoch, at which the vehicle passes through the perihelion

point.

Choices other than these given above may be made for the orbital

elements. Obviously, any choice of a new _lement may be expressed

as a combination of those elements already listed.

By convention, the range of e is limited to zero to infinity, while

a may take on any value from minus infinity to plus infinity. The

basic form of a particular conic section is determined by the values of

17



e and a associated with it. There are three basic forms, hyperbolas,

parabolas, and ellipses. If e is greater than one and a is negative,

the trajectory is hyperbolic; if e equals one and a is infinite, the tra-

jectory is parabolic; if e is less than one and a is positive, the tra-

jectory is elliptical.

In the present analysis, which is intended to be applicable pri-

marily to the midcourse phase of interplanetary voyages, only

elliptical forms are considered in detail.

B. 7 Geometric Properties of the Ellipse

The polar form of the equation of a conic section, with the origin

at one focus, is

(B-39)
r - l+e cosf-

where the constant f is the semi-latus rectum, f is the value of r

corresponding to

II
f=+ __

-- 2

In terms of a and e,

= a (1 - e 2) (B-40)

When the conic section is an ellipse, its equation in rectangular

coordinates, with origin at one focus, is

(x+ c) 2 +
2

a

2
Y__

b 2
= 1 (B-41)
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b is the semi-minor axis of the ellipse.

b = a (I - e 2)
I/2

The linear eccentricity c is defined by

(B-42)

c = a e (B-43)

c is the distance along the major axis from the center of the ellipse

to either focus. The lengths a, b, and c are related by the equation

2 b2 2a -- + c (B-44)

The sum of the distances of any point on the ellipse from each

of the two foci is equal to 2 a.

The quantities introduced in this section are shown in Fig. B. 2.

B. 8 The Anomalies

The true anomaly has been introduced in Section B. 5. Two

other anomalies that are widely used in celestial mechanics are the

eccentric anomaly E and the mean anomaly M.

The geometric construction required to obtain the eccentric

anomaly is imdicated in Fig. B. 3. The eccentric anomaly is related

to the circle of radius a circumscribed about the ellipse whose semi-

major axis is a.

The mean anomaly varies linearly with elapsed time t.

M : n (t - t o) (B-45)

Where n is a constant known as the mean angular motion, n is the

average angular velocity of the space vehicle in its elliptical orbit
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B

AI F I 0 A

8 I

O -- center of ellipse

F'F' - foci of ellipse

A'OA - major axis

BOB' - minor axis

LFL' -- latus rectum

P - arbitrary point on ellipse

OA = OA' = a = semi-major axis

OB = OB' = b = semi-minor axis

FL = FL' = g = semi-latus rectum

OF = OF' = c = linear eccentricity

<I AFP = f = true anomaly

F'P + PF = 2 a

Figure B. 2 The Ellipse
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0

P

A'
F I 0 R

A

APA'

AQA'

O

F,F'

P

-- elliptical arc with semi-major axis a

-- circular arc of radius a

- center of ellipse and of circle

-- loci of ellipse

- arbitrary point on ellipse

QPR .J- A'A

<IAFP = f = true anomaly

<IAoQ = E = eccentric anomaly

Figure B.3 Graphical Construction of Eccentric Anomaly
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about the sun.

217
n = -']5- (B-46)

where P is the period of the trajectory.

The constant t O in Eq. (B-45) is the time of perihelion passage,

the sixth orbital element of Section B. 5.

An alternate form for Eq. (B-45) is

M = nt+ M 0 (B-47)

where M 0 = - n t O (B-48)

M 0 is the value of the mean anomaly at time t = 0, M 0 is sometimes

used in place of t O as one of the orbital elements.

The true anomaly and the eccentric anomaly are related by the

following series of equations-

a (I - e 2)
= a (I- e cos E) (B-49)r=l+ ecosf

x = r cos f = a (cos E - e)

y : r sin f = a (1 - e2) 112 sin E

(B-50)

(B-51)

2
(1 + e cos f) (1 - e cos E) = 1 - e (B-52)

sin f - (l-e2) 1/2 sin E sin E = (l-e2) 1/2 sin f (B-53)
1 - e cos E 1 + e cos f

cos f = cos E - e
1- e cos E

cos E = cos f + e (B-54)
1 + e cos f
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The eccentric anomaly and the mean anomaly are related through

Kepler' s equation,

M=E-esinE (B-55)

The eccentric anomaly serves as a bridge relating the geo-

metric variable f to the dynamic variable M (or t).

B. 9 Dynamic Relations for Elliptical Trajectories

The derivatives of the three anomalies are

(B-56)

1 - e cos E

= n (1 - e2) 112

(1 - e cos E) 2

n (1 + e cos f)

1 -e 2

n (1 + e cos f)2

(1 - e2) 3/2

(B-57)

(B-58)

It is interesting to note that M is equal to a constant, r E is

equal to a constant, and r 2 f is equal to a constant,

rE=na

2 _ h n a 2 (l e2) 1/2

(B-59)

(B-60)

A comparison of Eq. (B-38) with Eq. (B-39) indicates that
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a (1 e2) - h2- (B-61)

and the refore,

2 3
U = n a (B-62)

The differentials of E and f may each be expressed in terms of

the other.

d E -- (1 - e2) 112 d f (B-63)
1 + e cos f

d f : (1 - e2) 112 d E
1 - e cos E

(B-64)

The velocity components in the radial and transverse direc-

tions may be written in a variety of ways.

v = i- = nae sinE _ nae sinf

r 1 - e cos E e2)1/2(1-

2
= n a e sin E _

r -6" e sin f (B-65)

v =rf -h
S r

na (1 - e2) I/2

1 - e cos E
n a (1 + e cos f)

(1 - e2) 1/2

_P
-IT

(1 - e 2) _U (1 + e cos f)
1 - e cosE -_

(B-66)
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The square of the total orbital velocity is

2
2 _ U 2,v ----_ (1 + 2e cos f+ e /

h

2 1
= U (_- - _) (B-67)

In the literature of celestial mechanics, Eq. (B-67} is known as the

"vis viva integral".

The orbital velocity may be expressed in terms of either E or f.

v =_ (1 + 2e cos f + e2) 1/2 (B-68)

1]2

= n a (I + e cos E) (B-69)

(1 - e cos E) 1/2

The total energy per unit mass is the sum of the kinetic energy

T and the potential energy U.

1 2 p
H = T + U =_ v r - 2a (B-70)

The total energy is a function of only one of the six orbital elements,

the semi-major axis a.

The velocity components in the x and y directions can also be

expressed in many forms.
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vx:_--- vsin g

n a sin E na

(1- e2)'1/2
1 - e cos E

sin f

n a 2 sin E
sin f (B-71)

v = _' = v cos g
Y

n a (I - e2)I/2. cos E

I -e cosE

na

(I - e2) I/2

(cos f + e)

= hr cos E : _(cos f+ e) (B-72)

In the flight path coordinate system the velocity components are

simply

Vp = 0 (B-73)

V = V
q

(B-74)

The velocity component equations may be used to determine the

simple trigonometric functions of 7 and g.

V r e sin E e sin f

sin7 - v - 2 2 I_2_ -
(1 - e cos E) (i+ 2e cosf+ e 2)1/2

(B-75)
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Vs (l - e2) I/2
COS _ = -- =

v 2 2 E)I/2(1 - e cos (i +

I + e cos f

e2)1/22 e cos f +

(B-76)

V
x sin E

sin g = ---=

V 2 2 E)I./2(I - e cos "

sin f

(1 + 2 e cos f + e2) I/2

(B-77)

v (I - e2) I/2 cos E
cos g = --_ =

v 2 2 E)l]2(1 - e. cos

cos f + e

(1+ 2e cos f+ e 2)I/2

(B-78)

The angular velocities 7 and g are

e 2) 1/2n (i - e cos E

(1 - e cos E) 2 (1 + e cos E)

_he (1 + e cosf)2 (cos f+ e)

(1 - e2) 3/2 (1 + 2e cos f+ e 2)

(B-79)

/

n (I - e2) 1/2

(1 - e cos E) 2 (1 + e cos E)

n (1 + e cos f)3

(1 - e2) 3/2 (1 + 2 e cos f+ e 2)

(B-80)

The position components in the flight path system may be ex-

pressed in the following ways"

h
p = r cos 7 = x cos g + y sin g =

e 2 1/2 I/2a (i - ) (I - e cos E)

_]2
(I+ e cos E)

a (_ - e2}

(I + 2 e cos f + e2) Ii2

(B-81)
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h
q = r sin'y = - x sin g + y cos g =--tan3,

v

1/2
ae sinE (i - e cos E)

1/2
(I + e cos E)

a (1 - e 2) e sin f

(1 + e cos f) (1 + 2 e cos f + e 2) z/2

(B-82)

From (B-66) and (B-81), two alternate forms of the angular

momentum equation are

h = r v = p v (B-83)
S

The components of acceleration in the three coordinate systems

may be obtained from (B-10), {B-17), and (B-28).

a r ='1: - r {,2 = .__
r

(B-84)

a = r'{+ 2 i'f : 0 (B-85)
S

a = x = -p-- (B-86)
x r3

ay = y = - p ..Z._ (B-87)
r 3

ap = - g v = P (p p + q q ) P---- (B-88)
q2 = - /_ r 3

aq= v- p _"+q q _" + _ (_ qq2-_ p} - -p-_q (B-89)
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._ APPENDIX C

GRAPHICAL CONSTRUCTIONS

C. 1 Summary

The review of the equations of celestial mechanics in Appendix B

has led to the development of two interesting graphical constructions.

The first is an approximate representation for the mean anomaly and

when the eccentricity e is less the 0.5. The second is an exact method

for determining velocity in an elliptical orbit. These constructions are

thought to be novel and are presented here as a by-product of the pri-

mary analysis with the thought that they may be of value as class-room

demonstrations.

C. 2 Graphical Representation of Mean Anomaly

The conventional geometric interpretation of the true anomaly and

the eccentric anomaly is given in Section B. 8 and Fig. B. 3. It would

be desirable to get a similar representation of the mean anomaly, M,

so that one could see graphically the relation between the angular motion

and elapsed time. Unfortunately, no simple, exact geometrical con-

struction is known for the mean anomaly. It is the purpose of this

section to show a simple, though inexact, method of obtaining the mean

anomaly graphically.

Figure C.1, which illustrates the method, is an extension of Fig. B. 3.

The construction is as follows:

1. From the focus F lay out FH parallel to OQ and meeting the

circumscribed circle at H.

2. Connect the center O with point H by a straight line.
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0

M

A

•_AFP = f = true anomaly

<_AOQ = E _ eccentric anomaly

FH il OQ

FL±OQ, HK .]. OQ, FL ! I HK

OF _ c _ ae _ linear eccentricity

HKfFL= ae sinE

OA _OH=OQ= a

_HOQ = sin-1 -(_-I_-/ sin" 1 (e sin E)

l_I = _]AOH = _AOQ - _HOQ = E - sin' l{e sin E)

= approximation of mean anomaly

Figure C.I Graphical Approximation of Mean Anomaly
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Them angle AOH is equal to M, _he approxima|ioa to the true anomaly.

In order to prove this statement, two auxiliary lines, FL and

HK, are drawn. Both of these are perpendicular to OQ, and therefore,

they are parallel to each olher. From the figure,

HK= FL = OF sin E = ae sin E (c-D

HK -!
'_ HOQ = sin "I ( OH ) = sin

-i
= sin

, a e sin E..)
a

(e sin E) (C-2)

_I = _AOH = _/AOQ -

-I
= E - sin (e sin E)

_/HOQ

(C-3)

The exact equation for the mean anaomaly is

M = E - e sin E

The error in the approximation is

M = _I - M = e sine - sin -I (e sin E)

(c-4)

i

(c-5)

The maximum magnitude of the error for a gig_n e occurs when

E=÷ _

]_MI = e - sin -I e
max

(C-6)
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For eccentricities up to 0.4, ]A MI
I , max

e = 0.5, it is l_- .

It may be seen from Fig. C. 1 that for

is less than I*. For

for

for

for

0 < f< _, M < E < f (C-7)

_r< f< 2r, f < E < M (C-8)

f = 0 , E = 0 = M (C-9)

f = _r , E = _r =. M (C-10)

C. 3 Graphical Solution for Crbital Velocity and Its Components

The objective in this section is to determine graphically the vel-

ocity at point P on an elliptical trajectory for which a, e, and n are

known.

In Fig. C. 2, the known trajectory is APBA'B'A.

graphical construction are the following:

1. With focus F as center and with radius a,

o

o

The length OR is proportional to the orbital velocity at P.

constant of proportionality is

(I - e2) ]/2

n

The s'_eps in the

describe a circle.

Extend theradius vector FP through P until it intersects

the circle at R.

Draw a straight line connecting the center of the ellipse

at O to R.

The

To prove these statements, several additional lines are drawn..

FR is extended through F until it meets the perpendicular dropped

from O to the extension of FP. The two lines intersect at S. Then,
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AI
I

B

g

CI / F A
\

\ /

B I

S

I
I
I
I
I
A
v

£
C

APBA'B'A - ellipse with center at O, foci at F and F', and

semi-major axis a = OA

CRBC'B'C -

P-

OS.i SR

circle with center at F and radius a

arbitrary point on ellipse

OR (1 - e2) 1/2
= V

n

1/2
OS - (1 - e 2)

n

1/2
v : SR = (i - e2)" v

r n s

I/2
OE = (i - e2)" v

n y

1/2
(I - e 2)

OD = - v
n x

<_AFR = f = true anomaly

<_ORS = Y = flight path angle

<_ROA = f - 7 = g

Figure C.2 Graphical Determination of Orbital Velocity and

Its Components
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FR = a (C-ll)

OF=ae (C-12)

AFR = @ OFS = f (C-13)

In the triangle ORS,

SR = a (I+ e cos f) (C-14)

OS --a e sin f

OR = a (I+ 2e cos f + e2)I/2

(C-15)

(C-16)

When the last three equations are compared with Eqs.

(B-65), and (B-68), it is apparent that

ha (I - e2) I/2

SR- _ v s n Vs

OS (I - e2) I/2
- V

n r

OR- (I - e2)1/2 v
n

(B-66),

(C-17)

(C-18)

(C-19)

Also,

ORS = tan -1 (_l_-) = tan-1 ('_-sVr) =

_/AOR=f- 7= g

(C-20)

(C-21)
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By constructing the lines RD and RE parallel, respectively, to

the major and minor axes of the ellipse, it is easily seen that

(1 - e 2) 1/2 (1 - e 2) 1/2
OD = OR sin g - n v sin g = n v x (C-22)

OE = OR cos g-
(l - e 2) I/2 (1 - e 2) 1/2

v cos g - v
n n y

(C-23}

The angle between the positive p-axis of the flight path coordinate

system and the positive x-axis is g. Therefore, OR in Fig. C. 2 has the

direction of the p-axis associated with point P on the trajectory. Since

the direction of the orbital velocity vector is along the positive q-axis,

the direction of v may be obtained by rotating OR count er-clockwise

through 90 degrees. Similarly, the directions of the velocity components

may be found by rotating the corresponding lengths in the figure 90 degrees

counter-clockwise.

The circle CRBC'B'C provides a simple means of visualizing the

variation of the magnitude of the orbital velocity in an elliptical trajec-

tory. As point P progresses on the ellipse, point R progresses on the

circle, and OR is a continuous measure of v.
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APPENDIX D

ELLIPTICAL CYLINDRICAL COORDINATES

D. I Summary

Elliptical cylindrical coordinates are known to be particularly

well suited to certain problems involving either ellipses or hyper-

bolas. Consequently, the applicability of this curvilinear coordinate

system to the problem of guiding a vehicle traversing an elliptical

trajectory has been investigated.

It is shown that there is an interesting relationship between the

elliptical system and the flight path system described in Appendix A.

The tangents to the three coordinate curves of the elliptical system

are parallel, respectively, to the p, q, and z axes=.of the flight path

system.

A comparison of the elliptical system with the reference trajec-

tory rectilinear systems of Appendix A indicates that the curvilinear

system has definite advantages for studying motion along a known,

fixed elliptical trajectory. On the other hand, the curvilinear system

offers no advantage in the study of the variation of an actual trajectory

from a known elliptical reference trajectory. Since the guidance pro-

blem is primarily a problem of the latter t_pe, the elliptical cylindri-

cal system has not been used in the ensuing analysis.

D. 2 Basic Coordinates in the Elliptical System

The analysis presented below is based on Sections 6.16 and 6.17

of Hildebrand (41)-, with associated problems 6.25 and 6.26.
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Elliptical cylindrical coordinates _,

tions

/3, z are defined by the equa-

x 0 = k cosh _ cos /3 (D-l)

y = k sinh ot cos (D-2)

z --z (D-3)

where k is a constant and x 0, y, z are conventional Cartesian coor-

dinates. The reason for the use of x 0 instead of x is explained later

this section.

From (D- I) and (D- 2),

2
x 0 2 2 2

+ Y = cos _ + sin _ 1 (D-4)
k 2 cosh 2 k 2a sinh 2 a

If a is a constant, Eq. (D-4) is the equation of an ellipse with

the origin at the center of the ellipse. The axes of the ellipse are

given by

2 k 2a = cosh 2 a (D-5)

b 2 2 2) k 2= a (1 - e = sinh 2 (D-6)

k
2

may be determined by subtracting (D-6) from (D-5).

k 2 (cosh 2 = k 2 2 2- sinh 2 a) = a e (D-7)

With the positive sign being chosen for the square root,

equal to the linear eccentricity

k=ae

k becomes

(D-8)
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By substituting (D-8) into (D-5) and (D-6) and again taking the

positive sign for each of the roots, cosh a and sinh a can be expressed

in terms of e.

I
cosh a = -- (D-9)

e 1

sinh a = (1 - e2) "2 (D-10)
e

Since the origin of the elliptical coordinate system is at the

center of the ellipse rather than at one focus, the quantity x 0 in

Eq. (D-1) is not the same as x in the Cartesian system of Appendix

A. The equation relating x to x 0 is

x=x0-ae
<D-ll)

The coordinates:y:andz in Eqs. (D-2) and (D-3) are the same as y

and z in the Cartesian system of Appendix A.

Equations (D-8), (D-9), (D-10), and (D-11) may be incorporated

into (D-I) and (D-2).

x = a (cos _ - e) (D-12)

1

y = a (I - e2) "_ sin _ (D-13)

When Eqs. (D-12) and (D-13) are compared with Eqs. (E_.50) and

(B-51), it is apparent that the coordinate _ is equal to the eccentric

anomaly E.
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Thus, the elliptical cylindrical coordinates a and /3 for an

elliptical path are given by

1

= tanh -1 (1 - e2) "_ (D-14)

13=E (D-15)

The advantage of this coordinate system lies in the fact that, of the

three coordinates a, _8, and z, only/3 is a variable when the path is

an ellipse with axes in the directions of x and y.

D.3 Coordinate Curves and Tangent Vectors

The curve obtained by holding two of the three coordinates in a

curvilinear system fixed and varying the third is called the coordinate

curve of the third coordinate. A tangent vector is defined as a vector

tangent to a coordinate curve at a given point and positive in the direc-

tion in which the value of the varying coordinate is increasing.

In this section, it will be shown that the tangent vectors of the

elliptical cylindrical coordinate system are parallel to the axes of

the flight path coordinate system.

The tangent vectors in the a, /3, z system are designated w_a, w/3,

w z, respectively. The corresponding unit vectors are u , u_, and u• -- Ot --Z °

Similarly, u and u are unit vectors in the x and y directions.
--x --y

The radius vector r may be written as

r = x u + y u + z u (D-16)
-- --x -y --z

= ae (cosh a cos /3 - 1) u
--X

+ a e sinh a sin /3 U + z u
my --z

(D-17)
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The three tangent vectors are

_r

u= _ = a e sinh a cos /3_xw + a e cosh a sin 13 u
--y

1

= a (1 - e2) 2 cos E u + a sin E u
--x --y

_r

w--13 a _ ae cosh a sin 13 u x + ae sinh _ cos _ Uy

(D-18)

1

= - a sinE u + a (1 - e2) "/ cos E u
-x -y

(D-19)

@r

W - -- - U
--Z @ Z --Z

(D-20)

The magnitudes of the tangent vectors are

1

I_w I = Iw_l =[ a 2 sin2E + a 2 (1 - e 2) cos2E] "_

1

= a (1 - e 2 cos 2 E) _ (D-21)

l_Wzl: I (D-22)

The unit vectors are

1

(1 - e2) _" cos E sin E
U = U + U
-_ I --x 1 --y

(I - e 2 cos 2 E) _" (I - e 2 cos 2 E) _

(D-23)
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sin E

1

u + (1 - e2) "2cos E u
1 -x 1 -y

2 2(1 - e cos E) _(1 - e2cos 2 E) _

(D-24)

U = U
--Z --Z

(D-25)

It may easily be verified that

u • u__ = u • u = u u = 0 (D-26)--(T --_ --Z --_ --Z

cos (a, x) = u . u = (D-27)
--_ --x. I

2 2(1 - e cos E) -_

and therefore the elliptical cylindrical coordinate system is an

cr thogonal system.
0

The orientation of the u and u vectors with respect to the

Cartesian axes x and y may be obtained by forming the dot products

of u with u and u
--_ --X --y'

1

(1 - e2) "_ cos E

cos (a, y) = sin (a, x) = u . u
sin E

(1 - e cos E)
(D-28)

where (,a,X) is:the angle between u
--0t

between__u anduy.

andu x, and (a, y) is the angle
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Cou,parisoa of (D-27) and (D-28) with (B-78) and (B-77), re-_-

SlaeC%iwe_y,indicates that the angle between u and the x-axis is equal

to g, the angle between the p-axis of the flight path system and the

x-axis. Therefore, --_uis parallel to the p-axis. Similarly, u/3 is
parallel to the q-axis, and u is parallel to the z-axis. Thus, it

--Z

has been proved that the tangent vectors cf the o_, /3, z system are

parallel to the axes of the p, q, z system.

This result may be verified by the following deductive process.

The _ coordinate curve for an elliptical path is obtained by varying

E with e and z held constant_ This curve is the ellipse itself, and

its tangent vector at any point is tangent to the ellipse at that point.

The q-axis of the flight path system was chosen to be parallel to

the instantaneous orbital velocity vector, and this vector is also

tangent to the ellipse at any given point. Therefore, uf3 must be

parallel to the q-axis. Moreover, u is obviously parallel to the
--Z

z-axis. Since _uf_ is parallel to the q-axis, and, --zU is parallel to the

z-axis, and both the elliptical cylindrical coordinate system and the

flight path coordinate system are orthogonal systems, it follows that

u must be parallel to the p-axis.

These results may be summarized mathematically in the follow-

ing two equations"

U -- U
--ol --p

(D-29)

= U
u__ --q

(D-30)

where u and u are unit vectors along the p and q axes, respectively.
--p --q
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D. 4 Evaluation of the Elliptical Cylindrical Coordinate System

In the elliptical cylindrical coordinate system, the differential

change in the radius vector along a known trajectory is

dr = w da÷ w_dB÷ w d z
_ _ - _Z

(D-31)

When the trajectory is an ellipse,

da=0=dz (D-32)

Then,

dr = w/3 d /3 = a (1 - e 2 cos 2

1

E)_d E u_ (D-33)

The deviative of r with respect to t is

1
dr 2 2

a (1 - e cos E/2"_"-- u_

1

n a (1 + e cosE) "2"

1

(1 - e cos E)_

u_/3= v (D-34)

Equation (D-34) represents a simpler, more elegant method of

deriving the velocity along an elliptical trajectory than any obtainable

by the use of rectilinear coordinate systems. It is in studies of this

nature, involving the dynamic or geometric characteristics associated

with a known ellipse, that the elliptical cylindrical coordinate system

shows to good advantage.
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The guidance problem is primarily concerned not with the differ-

ential d r, but rather with the variation 5 r. It is important to dis-

tinguish between these two quantities. The differential d r is the

infinitesimal change in the position vector r due to an infinitesimal

displacement along a known reference trajectory. The variation

6 r is the small difference between the radius vector for an actual

trajectory at a given time and the radius vector for a known refer-

ence trajectory at the same time.

When an elliptical cylindrical coordinate system is used in

conjunction with an elliptical reference trajectory, the differentials

of a, e, _, and z are all zero. However, the variations of a, e, _,

and z need not be zero, and in general they are not. Thus, the main

advantage of the elliptical system, the fact that d _ = 0, is of no

consequence when the problem being studied is a variational problem.

The first variation of r is

6r=6xu + 6yu + 6zu
-- --x --y --z

= 5 (ae cosh o_cos /3- I) u
--X

+ 6 (ae sinh _ sin /3)u + 6z u (D-35)
--y --z

ar ar Or
6 a+ - 6e+ - 6

aa

Or Or
+ 6 S + 6 (D-361

0_ dE

This formulation for 5 r offers no advantage over that which can

be obtained from any of the three reference trajectory rectilinear co-

ordinate systems of Appendix A. Since the coordinate variables in the

rectilinear systems are more familiar than those of the elliptical sys-

tem, no further use will be made of the elliptical system in this analysis.
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APPENDIX E

VARIANT EQUATIONS OF MOTION

E.1 Summary

The variant equations of motion of a vehicle in an n-body gravita-

tional field are developed first in vector form and then in component

form for the three different reference trajectory coordinate systems.

A simplified matrix notation is introduced which indicates that the

variation in acceleration is related to the variation in position by means

of a symmetric 3-by-3 matrix.

E. 2 The Variant Equation in Vector Form

The vector form of the variant equation of motion is obtained from

Eq. (B-3) by taking the first variation with respect to r at a fixed time.

On the left side of {B-3),

r_5 ( r_)- r_ (-3r6r +rGr) (E-I)

where the symbol 5 signifies the first variation.

On the right side of (B-3},

6(-
G m i G m i

d i) - (- 3 d i5 di+ diGd i) (E-2)
d3 d_--
1 I

From Fig. B. 1,

d. = r - r. _r_-Jj

Since r i is unaffected by a variation in r,

5d i = 5r (E-4)
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Then,

Gm. Gm.

6 (- d.3 1 _di)- d 41 (3 d. 5d. - d.5r)_1 1 1 --
1 1

(E -5)

The variation in the last term of (B-3) due to 5r is zero.

The variant equation in vector form is

5"r - p (3r 6r - r 6r)
-- r 4 --

n

5d. - d. 5r)
m i

+G d 4 (3di i 1-
i=l i

(E -6)

E. 3 Variant Equations in the Reference Trajectory Coordinate Systems
am

Since the x, y, z coordinate system is non-rotating, 5r and 5r

are obtained directly from (B-4) and (B-6).

5r and 5d
i

5r = 6XU, x + 5y Uy + 6z u z (E-7)

.e

5r = 8Eu x + 6"y ._Uy + 5_'u z (E-S)

are derived from (B-7) and (B-8).

6r- x 6x+ y 6y+ZSz
r r r

(x - xi) (y - yi)
5d. - 5x +

1 d. d.
1 1

(E-9)

(z - zi)

6y + d. 5z (E-10)
1

Equations (E-7) through (E-10) are substituted into (E-6), and the

resulting equation is written in matrix form.
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l.

/6:1
_6z

r x

3 yx

ZX

xy

2
Y

zy

xz1yz

2
Z

n
m.

(i(x _ xi)2

(y yi)(x- xi)

z zi)(x- xi)

(x - xi)(y - yi )

(y _ yi) 2

(z - zi')(y - y i)

(x - xi)(z - zi) \

(y - yi)(z - z i)

(z - zi )2

-d2 i I3

(E -ll)

$

where 13 is the 3-by-3 identity matrix. An asterisk above a capital letter

indicates that the letter represents a matrix.

Equation (E-11) may be written more compactly as follows:

_ (3rr T T *6{"=_ _ __ - r rI 3)

n

- . 6r

+ G = _ (3 d id d i 13) (E-12)

ix1• 5y

6z

where r, d i, and 5r are three-dimensional column vectors and the super-

script T indicates the transpose.

The expression inside the square brackets in (E-12) is a symmetrical

3-by-3 matrix which is designated G.

#

5r" = G 5r (E-13)

47



In the r, s, z coordinate system, rotating with angular velocity f,

r+6r = (p+6p) u +6su +(z+6z) u (E-14)
-- -- -r -s --z

v + +v = (_+ 6_ -+6s)u
i -- --r

+(6_ + p_+ f6p) u +(_- +6_) u (E-15)
--S --Z

ee ee et

-f6S) Ur+ (O f+ 2 ? f+ 2f6[_+f60

+6k'-_2 6s)u +(_.'+6_.5u
--S --Z

(E -16)

6a is obtained by subtracting (B-13) from (E-16).

Qe

6a --Gr'=(6_"-_26p - _._6_ -f6s)u
-- -- --r

eo es oo

- _ +6zu+ (2_+_ + f60 + +s _2 6s)us _. (E -17)

Then Eq. (E-12) may be written as

• f(+!._ V

+G

n (p - pi), 2

3 t- si(p"pi)
x
\(z..-zi)(p - pl )

-(p - pi)si

2

S i

-(z - zi)si

m

0 - r 2 13

\zp 0 z2/

(p -, pi)(Z - zi)_

(z - zi)2

6S

6z

(E -18)
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A similar development can be carried out in the p, q, z coordinate

system, which rotates with angular velocity g. The resulting equation is

6_', _2 6p - 2_6 4-'_6q/

5z

n

+G: (P _ Pi)2
3 (q qi)(p-pi )

(z- zi)( p pi)

P

qP
zp

pq pz /
,. 2 qz - r 2 13

zq z 2

(P" Pi)(q- qi ) (P-Pi)(z- zi ) ) •
(q-qi)2 (q qi )(z zi) "d2i I_

(z-zi)(q-qi) . (z zi )2

I

6q

6z

(E -19)

E° 4 Symmetry of Matrix G

An interesting physical explanation of the symmetry of the matrix:¢

' (3 in Eq. (E-13) has been givenby McLean, Schmidt, and McGee.

Since all the forces being considered are gravitational, a scalar

potential V may be defined such that

eQ

r=V V
D

where V signifies the gradient of a scalar quantity.

the x y z coordinate system,

8v

(E-20)

In matrix form in

(E-21)

$
Page 34 of Reference (13).
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$1

The variation in x is

6_,"= a_" a_" a_"
_. 6x+_._. 6y+.y£ 6z

a 2 v a 2 v

= a-_x 6x+-- ay ax
6y +

a 2 v

az _x

6z (E-22)

Analogous equations may be written for 6_" and 6"_.

is given by

Then the vector 6 _"
i

+iI
6

a 2 v a 2 v a 2 v

I._ a2v a2 V

/,x\

6y (E-23)

A comparison of (E-23) with (E-13) indicates that the 3-by-3

matrix in (E-23) is G and that its symmetry is due to the fact that

.a 2 v, a2 V

a'r i'arj = arj ari; i, j, = 1, 2, 3 (E-24)

where r i and rj are components of r.

Thus, as long as the force field is conservative, the matrix G

relating 61-" to 6 r is symmetric. The inclusion of the effects of earth

oblateness in the analysis does not affect the symmetry of G.
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APPENDIX F

GENERAL MATRIX FORMULATIONS

F. 1 Summary

Several different types of matrix formulations are introduced to

represent the solution of the variant equations of motion. The inter-

relationships among the various matrices are developed. A method

is indicated for evaluating the terms in the matrices by the use of

numerical integration. Some interesting symhaetry properties of the

matrices are proved. The symmetry properties are used to find the

inverse of the basic 6-by-6 matrix by inspection.

F. 2 Path Deviation

Just as the solution of the general equations of motion involves

six constants, so does the solution of the variant equations of motion.

The analogy may be carried further. It was pointed out in Section B. 6

that the six constants in the general solution may be the three compo-

nents of position and the three components of velocity occurring at a

specified time; in the variant solution the constants may be the varia-

tions in the three components of position and the three components of

velocity occurring at a specified time. The constants in the variant

solution may also be the variations in the components of position at

two different specified times. If the motion is two-body motion, varia-

tions in the six orbital elements may be used. Any one of these group-

ings of six constants may be regarded as a six-component vector. This

type of vector will be referred to as the path deviation vector,
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The mathematical representations for the three classes of path
deviation vectors mentioned above are

(I)

L Sv k

(2)

6r_i

6r.

-j

(3) 5e

5_rk and 5v k are, respectively, the position variation and the

velocity variation at time t k. They may be grouped together into a

single vector, which will be designated 5x k. 5r_i and 5rj are the

position variations at times t i and tj. 5e consists of the variations

in some grouping of six orbital elements.

The three different path deviation vectors may be related to each

other as follows

5e : {R k V k}

= H..Sr. + H.. 5r.
Ij --i ..ll--3

# #

>= {R k V k} 5X_k (F-l)

(F-2)
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where

R k = _ 6v k = constant
(F-3)

*I, 1Vk : aV-k 5rk= constant
(F-4)

{ I "}, Oe

Hij: _ 6r. = constant
--3

(F-5)

R k, V k, Hij and Hji are all 6-by-3 matrices. The subscript k in R k and V k

indicates that the elements of the two matrices are functions of t k. Similarly,

the elements of _ij and Hji are functions of t i and tj.

F. 3 Variation in Position

The variation in position at any arbitrary time t m

pressed in terms of the path deviation vector.

may be ex-

#

5r = F 6e (F-6)
--m m --

= F m {R k V k } 6x k (F-7)

= F m {Hij 6_ri + Hji 6rj} (F-8)

-._ #

= {Mink Nmk } 6x k (F-9)
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where

• f rm 1
• Iarm

Mink = [_-_--k

• {armNmk = ar k

6rk= constant }

5vk= constant t

(F-10)

(F-II)

(F-12)

F m is:a 3-by-6 matrix. Mmk and Nmk are 3:by-3 matrices.

Since the elements of the path deviation vector are independent

of each other, it is apparent from (F-7), (F-8), and (F-9) that

* * * * , :,

F k R k = F i Hij=Mkk = 13
(F-13)

F kV k = F i Hji = Nkk = 0 3
(F -14)

where 0 3 is the 3-by-3 zero matrix.

In general,

* # #

Mmk = F m R k (F-15)

N
mk

=F
m V k (F-16)
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Equation (F-15) indicates that Mink. whose elements are functions of

both t m and tk, ' .can be written as the product of two matrices, the

elements of one being functions solely of t and the elements of the
m

second being functions solely of tk A similar statement may be

made with respect to N ink"

F.4 Variation in Velocity

The variation in velocity at time t m is

6v ffi L 6e (F.17)
--m m --

= L m R k .Vk 5x k

= Lm ij 6ri + 6rj

= T 6mk m

(F-18)

(F-19)

(F- 20)

where

L
m

a _Vm_

Ti-_J̧

r'v l't_"_ 5Vk= coast .a '

Sa Vm constant}IfF2ZkI_rk--_

(F-21)

(F-22)

(F-23)
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From (F-18) and (F-20),

* # *

Smk = L m R k

Trek = L m V k

(F - 24)

(F-25)

The equations corresponding to (F-13) and (F-14} are

Tkk = L k V k = 13 (F - 26 )

Skk = L k R k = 0 3
(F-27)

When t m = t i, Eq. (F-19) becomes

5v. :L.
--1 t ijH 6r i+ Hji 6r

= J.. 5r. + K.. 5r.
1] -I lj --j

(F-28)

(F-29)

where

• .. viL }
Jij = Li Hij = l _r_i 6rj = constant

(F-30)

. = constant}
6r 1

(F-31)

$ #

Jij and Kij are 3-by-3 matrices.
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(F-29) may be solved for 6rj by pre-multiplying the terms of the
-1

equation by Kij , where the superscript -1 indicates the inverse of a

square matrix.

6rj = - Kij Jij 6ri + Kij 6vi

Kij {" Jij I3) 6xi (F-32)

Comparison of (F-32) with (F-9) indicates that.

* * -1 *

Mji = " Kij Jij

* -I

Nji = Kij

(F-33)

(F-34)

The path deviation vector at time tj may be expressed in terms

of the path deviation vector at time ti as follows:, .

6xj

Mji Nji

Sji Tji

6x i : Cji 6x i
(F-35)

• where

C.. Z

31

/

Mji

Sji

Nji a x..
Tji

(F-36)
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The 6-by-6 matrix _ji is known as the transition matrix.

(F-35) that

5xj = Cji Cij 5xj

• . Cji Cij = 16

where 16 is the 6-by-6 identity matrix. Then,

Mji Mij + Nji Sij = 13 = Sji Nij + Tji Tij

Mji Ni i + Nji rij = 0 3 = Sji Mij + Tji Sij

It follows from

(F-37)

(F-38)

(F-39)

(F-40)

F. 5 Matrix Differential Equations

The position of a point P with respect to the 0rigin of a rotating

coordinate system may be represented by the vector r, the components

of r in the rotating system being r 1, r 2, and r 3. The angular velocity

of the system with respect to inertial space is __, with components ¢_1'

¢_2' and ¢_3"

The velocity of P in a non-rotating coordinate system is related

to its velocity in the rotating system by the equation

V = = +tO X r
-- NR R -- --

(F-41)

where the subscripts NR and R refer, respectively, to the non-rotating

and rotating coordinate systems. The matrix form of Eq. (F-41) is
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Vl rl+_2 r3 - _3 r2

v2 = r2 +_3 rl _1 r3

v3 r3 +el r2 _2 rl

(F-42)

_2

r 3

+Wr (F-43)

where W is given by

W=

.0

_3

-_2 e I

_2

-e l

0

(F-44)

W is a skew-symmetric matrix, i.e.,

T=_ w (F-45)

The variation of v is

5v = 5 NR
=5 +

R
+WSr (F-46)
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Since the angular velocity of the coordinate system is not affected by

variations in r,

6 W=O 3 (F-47)

From Eq. (F-9), the variation of the velocity of P in the rotating

system is

I ril I * *

(6ri) = 5ri2 = at. at i --3
ti R 1

5_'i3

(F-48)

Equations (F-47) and (F-48) are substituted into (F-46), and the

resulting expression is equated to (F-20).

a Mij

5vi _ a t i

f ,= Sij

, , _N.. , ,
+W. M.. ij +W. N..

i 13 a ti i iJ

*ITij 5xj

In similar fashion 5a i may be written in terms of Sij,

derivatives, and then equated to the right-hand side of (E-13}.

f , •

• . , , aT.. -:.- ,
aSIJ +W ____/l +W. T..

5ai = a t---q- i Sij a t i I ij

= G i6r. = G. .. Nij 5x.
-1 1 _ 1j -J

}

Tij,

6X.
-3

6X.
-j

(F-49)

and their

(F-50)
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By equating coefficients of 6r. and also of 5v. in (F-49) and (F-50),
--J --J

the following matrix differential equations are obtained:

aM. • * * *
zj +W.M.. = S..

0 t i 1 z3 z3
(F-51)

a S. • , , , *
----9- +W.S.. = G. M..
a t i z lj i lj

(F-52)

aN.. , , ,
+W.N.. = T..

a t i I zJ 13
(F-53)

@ T.. , , , ,
+W.T.. = G.N..

St. i zj z lJ
1

(F-54)

matrices F. and L..
1 1

(E -13).

Matrix differential equations may also be obtained for the 3-by-6

These are derived from Eqs. (F-6), (F-17), and

J. ._,

d F i +Wi 6e : Li 6e

fd:L i

* "t|i_ * *+ W i e = G i F i 6e

(F-55)

(F-56)

are

The differential equations corresponding to (F-51) through (F-54)

d F. , , ,
1

+ W i F i = Li,
1

(F-57)

dL.
1

dr.
1

+W. L. = G. F.
1 1 1 1

(F-58)
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Finally, it is of interest to relate the 6-by-3 matrices R. and
$ 1

V i to each other. This may be done by taking the time derivative of

Eq. (F-l) with respect to the rotating coordinate system and equating

the result to O_6, the six-component zero vector.

dR. dV.
d 1

(6e) : 6r. + 6v.

+ R.
1

d '_

dt. (Sr i} + V. d-- _ _ (6vi)=_°6
1 1

(F-59)

The derivatives of the variation vectors with respect to the

rotating system are

d ;_

(6r i) = 6v i - W i 5r_ i
1

(F-60)

d _:"

(6vi) = 5a_i - W i 5v.
1

.,. _-[¢

= G i 6_ri - W i 6V i (F-61)

(F-60) and (F-61) are substituted into (F-59)..

d I_i , , ,

-Riwi÷ vi G i

Vi . .+ R

+ dt i l i 6_vi: 08 (F-62)
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The coupled matrix differential equations are obtained from the

coefficients of 5r. and 5v. in (F-62).
--1 --1

dR. , , , ,
1

_ - R i W i = _ V i G i
1

(F-63)

dV.
1

dt.
1

V.W. = -R.
1 1 1

(F-64)

Equations (F-63) and (F-64) may be used to get relations in-

volving the first partial derivatives of Mij, Nij, Sij, and Tij with re-

spect to tj.

M d R. , ,
8 ij * * ""=F _ =F. W.-V.
8 i dt_ 1 j j j

(F-65)

O ij * j

0tj = Fi = F i j Wj

, dR ,,}=L. W -V.G
8tj = Li dtj 1 j j 3

* *

= L. -----_J = L. W -R

dtj 1 dtj 1 j j

(F-66)

(F-67)

(F-68)
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These four equations may be written as matrix differential

equations in Mij, Nij, Sij, and Tij.

*

8 M.. , , , ,
--_ - M..W. = -N..G.
a t. ij j ij j

J

a N.. , , ,
D -N..W. = - M..

a t. i:] j ij
J

S..

- ..W. = - T..G.
8 t. ij j ij j

J

ST.. , ...°" ,
1J - T.. W. = - S..

8 tj 1j j 1j

(F-69)

(F-70)

(F- 71)

(F-72)

F. 6 Numerical Integration

The variant equations of motion are represented by (E-13). The

solution of these equations for 5r as a function of time is represented

by (F-9). The problem now is to evaluate the elements of Mij and Nij.

No direct analytical solution of (E-13) has yet been devised for

the case when there are disturbing forces which affect the motion of
* *

the vehicle. However, the elements of M.. and N.. may be found by
ij ij

numerical integration of the coupled equations (F-51) through (F-54).

Since Mij, Nij, Sii,_ Tij are all 3-by-3 matrices, each of the four

matrix differential equations represents nine first-order linear differ-
* *

ential equations. The elements of the 3-by-3 matrices W i and G i are
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known functions of the characteristics of the reference trajectory.

,Equations (F-51) and (F-52) are coupled equations in the elements

of Mij and Sij. They can be integrated numerically if initial values

are known for the elements of Mij and Sij. Fortunately, such initial
values are available from (F-13) and (F-27).

Mjj = 13 Sjj = 0 3 (F-73)

Similarly, (F-53) and (F-54} are coupled equations in N.. and T..
D 13

which can be integrated numerically since the initial values are given

by

Njj = 0 3 Tjj = 13 (F-74}

The integrations are carried out at a fixed value of tj. The independent
variable is t..

1

The computation can be simplified if a non-rotating coordinate

system is used, for in that case the matrix W i vanishes. The accuracy

of the computation is improved if the z-axis of the coordinate system

is perpendicular to the plane of the motion that would occur if there

were no disturbing forces; i.e., if the coordinate system is one of the

reference trajectory systems described in Appendix A. With this

choice of coordinates, the motion in the z direction is relatively loosely

coupled (through the disturbing forces} to the motion in the plane per-

pendicular to the z-axis, and consequently four of the nine elements in

each of the 3-by-3 matrices are close to zero. This fact causes a

considerable reduction in the magnitude of the round-off errors.

As a result of the numerical integration, the matrices Mij, Ni_.,j

Sij, and Tij are found as a function of t i for a fixed value of tj and a

known reference trajectory. Then, 5r i and 5v i are known in terms of
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the six constants that constitute 5xj.
Matrices K.. and J.. may be evaluated by the use of Eqs. (F-34)

j1 ]1
and (F-33), respectively.

The eighteen-element matrices Rj, Vj, F i, and L i cannot be
evaluated, but they are not needed to solve the guidance problem.
These matrices have been introduced because they illustrate the fact

that each of the nine-element matrices may be regarded as the pro-

duct of two matrices, one of which is a function of t i only and the

second of which is a function of only tj. Moreover, it will be shown
in Appendix K that the eighteen-element matrices are useful in de-

riving an analytic solution of the guidance problem when the refer-

ence trajectory is an ellipse.

F. 7 Matrix Symmetry

In this section the following relations among the matrices are

proved:

* * T
T.. = M..

]1 1]

* * T
N..= -N..
j1 13

* * T
S.. = -S..

31 1]

* * T
J.. = J..

13 13

* * T
K..= -K..

]1 1]

(F-75)

(F-76)

(F-77)

(F-78)

(F-79)
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The superscript T signifies the transpose of a matrix. The proofs

utilize the face that G is known to be a symmetric matrix and W is known

to be skew-symmetric. •

The first proof will be that of (F-78), which states that the J..

matrix is symmetric. This fact was first noted by Battin From

Eqs. (F-33) and (F-34),

", . * *
M .... j -I -I= - K.. : - N.. (F-80)

jz zj zj jz

Equation (F-80) is differentiated with respect to t i, with sub-

stitutions for the derivatives of M.. and N.. being made from (F-69)
jl jl

and (F- 70).

* -I

, aJi _J * * * * * -i * * *

Mji 0t----?- + (NIji Wi - Nji Gi)Jij = - Nji Wi + Mji
(F-81)

* -1

(F-81) is pre-multiplied by M_ij .

* -1
Ji _ * -i* * -i * * -i * -I* *

....... -J.. W. =I 3a t i + Jzj Gi J1j + Wz Jzj zj z
(F-82)

Since the left-hand side of (F-82) is equal to the identity matrix,

which is symmetric, it must be equal to its own transpose. When

(F-82) is equated to its transpose and _.T and _.T are replaced by
, , 1 1

G i and - W i, respectively, the result is

* -1

aJij * -i * * -i * *+J.. G.J.. +W. .:-i- -Iw
• . .

at i zj z lj z lj D z

* _1T

aJij * -1 T* * -1T

- 0 t i + Jij Gi Jij

• • _i T • _i T •

+ Wi Jij - Jij Wi (F-83)

Page 697 of Reference (5)
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* -1 .

It is apparent that this equation can be satisfied if J.. is a symmetric
* -1 . 1j

matrix. It must now be proved that J.. is necessarily symmetric.
ij

Equation (F-82) consists of nine first-order differential equations,

each of which has one constant of integration. If it can be shown that
* -I .

these constants are such that J.. is symmetric at some particular
ij

time, then the matrix must be symmetric for all values of time.

When t. = t
,_ 1 j '

-,- . -:." *

* -I _. = _ i3 03 03_jj-1 = _ Mjj jj =
(F-84}

* -1 .

The zero matrix is symmetric. Consequently, J.. is symmetric
1j

when t. = t. and hence for all values of time. The inverse of a non-
1 j

singular symmetric matrix is itself symmetric. Therefore, the
,

matrix J.. is symmetric for all combinations of t. and t. for which
* -I . 13 i j
J.. is non-singular, and Eq. (F-78) has been proved.

1j
The second relation that will be derived is (F-76). Again the

proof is a consequence of the symmetry of a matrix differential equa-

tion. Equation (F-5a) is pre-multiplied by - Nji. Subscripts i and j

are interchanged in (F-70), and the resulting equation is post-multi-
,

plied by Nij. These two equations are then added.

-N.. +
j1 _ti ati

N..- 2N..W.N.. =- N.. T..- M.. N..
ij j1 i ij j1 ij j1 ij

(F-85)

From Eq. (F-40) it is seen that the right-hand side of (F-85) is

equal to the zero matrix.

, , _ N.. * , ,N.. -N.. ----_ = 2N..W.N..
at i ij j1 ati j1 i ij

(F-86)
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Since W. is skew-symmetric, the transpose of Eq. (F-86} is
1

* T * T
a Ni_ * T * T _N_i * T * * T

4 N.. +N.. _ = - 2N.. W.N..
t i j1 ij _ t i iJ 1 j1

(F-87)

* * T
It is clear that both (F-86} and (F-87) can be satisfied if N.. = + N.. .

p -- ij
The argument to be presented here is essentially the same as the

one used in proving the symmetry of Jij" Both (F-86) and (F-87} con-* * T
sist of first-order differential equations; therefore, if N.. = - N..

j1 D
at some particular time, the equality will be maintained for all values

of time.

When t i = tj,

Mjj = 13 Njj = 0 3 Tjj = 13
(F-88)

From (F-53),

at i
= - Wj Njj + Tjj = 13

(F-89)

From (F-70},

at i
t i = tj

= Njj Wj - Mjj = - 13
(F-90)
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* * T

Equatioa,(F-88) shows that when t.1 = tj' Nji = +- Nij , since both

are equal to OS. Equations (F-89) and (F-90) are used to pick the

p,roper sign; because the diagonal elements of Nij, and hence of
T . *

Nij , are increasing with t i, while the diagonal elements of Nji

are decreasing with t i, the negative sign is required.

N.. = - N..T (F-91)
j1 1]

and (F-76) has been proved.

The proof of (F-79) follows directly from substituting (F-34)

into (F-91) and then inverting and transposing both sides of the equa-

tion.

, . , , - 1

N.. N T -1 T= - .. = K.. = - K.. (F-92)
jl 13 zj 31

* * T
Kji = - Kij (F-93)

(F-78) and (F-79) are used to establish (F-75). The left-hand

part of Eq. (F-40) is solved for Tji, and substitutions are made for

Mij, Nji, and Nij from (F-33) and (F-34).

"" -1 * *
T.. = - N.. M..N..

jl _j lj jz

* * -1 * * -i

= _ Kji (- Kji Jji ) Kij

* * -i * -i _j.i)T= Jji Kij = (- Kji J

* T
= M.. (F- 94)

13
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* * T
The proof that S.. = - S.. involves the same sequence of steps

p 1]
as that used in deriving (F-76). Equation (F-52) is pre-multiplied

* *-1

by - Sji G i . The subscripts in (F-71).,.;_ are. interchanged, and the

equation is then post-multiplied by Gi -1 St i. The two resulting

equations are added.

- Sji i _ - Sji WiSij

a sji  i-I * * * -i *+ -_i Sji wi Gi Sij

=., Sji Mij - Tji Sij (F-95)

The right-hand side of (F-95) is the negative of the right-hand side

of (F-40) and is therefore, equal to the zero matrix. (F-95) may

then be simplified as follows"

, , , aS..
0 Sji _.-1 S.. - S.. G. -1 1]

1 1] ]1 1 _ t i

* * * * * *

Sji (Gi -I W i+ W i Gi -I) Sij (F-96)

The transpose of (F-96) is

* T * T

.... 'Sji T * *-I 0 Sji8 St] _.-i + sijT Gi .
ti I _ tI

"" * * * - 1 "" T
"Sij w (Gi -I Wi + Wi Gi -) Sjl (F-97)
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Equations (F-96) and (F-97) can both be satisfied if

* * T
S..=+ S.. .

31 - 13
(F-98)

When t i --tj,

* * * T
Sjj = 0 3 = + Sjj

(F-99)

To determine the proper sign in (F-98) it is necessary to examine
*' *

the derivatives of Sij and Sji with respect to t i when t i = tj. From
(F-52),

_Sij |_ , , , • •Iti = - Wj Sjj +Gj Mjj = Gja t i = tj

(F-100)

From (F-71)

t * * ":' * *
=S..W. -T..G. = -G.

at i t. = t. JJ J JJ J J
1 j

Since G is symmetric,

ati I

*T lOs..
l_L__

°ti it. = t.

(F-101)

(F-102)
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It follows from (F-96), (F-97), (F-99), and (F-102) that

* * TS.. -- -S..
j1 ij

(F-103)

All five of the relations stated at the beginning of this section

have now been proved.

By the use of the first three relations, the 6-by-6 matrix C..
1j

may be inverted by inspection.

* -I *

cij : cji :

M.. N..
j1 j1

S.. T..
jm j1

I

* T * T
T.. -N..

1J D

__..T * TM..

ij mj

(F-104)

F. 8 Method of Adjoints

Since the completion of the work reported in the last section, the

author ha_ been apprised of two additional methods of proving the in-

verse relationship of Eq. (F-104). These are included here to round

out the discussion of matrix formulations. The first method employs

adjoint functions, and the second involves the properties of symplectic

matrices.

The adjoint method is suggested in the work of McLean, Schmidt,

and McGee (13). The technique requires that Eq. (E-13), which con-

sists of three second-orde_ equations, be re-cast as a set of six first-

order equations. This is accomplished as follows:

6__ o 3 6_ 1
6_= = > =

__ , ]G O3J 6v

Z6x (F-105)
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where

#

Z=

0 3 13

G 03

(F-106)

The vector X, which is adjoint to 5x, is defined by the matrix

equation

i:-zTX (F-107)

The six-component vector k_.may be partitioned into two three-com-

ponent vectors p and v.

( Tt{}_ 03 -G p__

= _ _c

-I 3 03 v_

(F-108)

Since G is a symmetric matrix,

 =-Gv (F-109)

Also,

_/ = - _ (F-n0)

(F-109) and (F-110) can be combined into a single second-order vector
!

equation.

o.

y=Gy (F-Ill)

This equation has the same form as (E-13).
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As a consequence of (F-110), X may be written as

_ V

(F-112)

To show the relation between 6x_ and X-, pre-multiply (F-105) by

X7, post-multiply the transpose of (F-I07) by 6x, and add.

xT6_+_T6x xT* xT *= Z 6x - Z 6x = 0 (F-113)

d
(X-T 6x) _ 0 (F-114)

X T 6x = constant (F-II5)

Like 6x_, X- must be a time-varying vector. By analogy with

(F-35) X_j_ the value of X- at tj, may be related to X-i"

X_j = Dji _--i (F-116)

From (F-II5)o

k__T 6x_j = x_iT 6x i

(F-35) and (F-II6) are substituted into (F-II7).

T*
x_iT Dji Cji 6x_i = k_iT 6x_i

(F-117)

(F-II8)
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Since 5x. is arbitrary and k. is assumed not to be a zero vector,
--1 --1

* T * *

Dji Cji = 16

* -I *C.. =D. T.
j1 j1

Equation (F-120) relates the 6-by-6 solution matrix of (F-35) to the

6-by-6 solution matrix of (F-116).

A new six-component vector k' is defined as follows:

x--

• 1,'

! *

is related to k__by the skew-symmetric matrix P.

X':P

(F-If9)

(F-120)

(F-121)

(F-122)

where

03 3

p = , :

-I 3 0 3

P has some interesting properties.

_,-I = pT

(F-123)

(F-124)

(F-125)
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Equation (F-107) can now be written in terms of 7['.

i-- i'o - zT

This equation is pre-multiplied by P.

(F-i26)

7[ = P Z PT[ (F-127)

When the matrix multiplication in (F-127) is carried out, it is found that

*_T* *P P = Z (F-128)

%1 T

.'.7[ = Z 7[ [F-129)

The form of (F-129) is identical with that of (F-t05). Therefore,
!

the solution for X must be the same as that for _x except for a difference

in the six arbitrary constants. The constants for 7[' are the components

of -i" Then, by analogy with (F-35),

k ....' = C 7t (F-130)
--j ji -i

From (F-116), (F-122), and (F-130),

• = P_-- = PT[i = P Djili (F-131)-j j - _

For an arbitrary k_i,

C.. P = P D.. (F-132)
ji ji

D.. = P C.. P : - P C.. P (F-133)
]i ji ji
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From (F-120), the inverse of Cji is

• *Cji = : _ Cji
(F-134)

The matrix multiplication is carried out by use of the definitions given in

(F-36) and (F-123).

+..T -I_..T
j1 ]1

__ T * T
ji Mji

(F-135)

This equation is the equivalent of (F-104).

F. 9 Symplectic Matrices

The author is indebted to Dr. James E. Potter, of the staff of the

M. I. T. 'Instrumentation Laboratory, who first pointed out to him that the

transition matrix is symplectic and that this fact can be exploited in

studying the properties of the transition matrix. A mathematically

rigorous discussion of symplectic groups is presented in Chapter VI of
(42)

Weyl.

A symplectic matrix can be defined by analogy with an orthogonal

matrix. The matrix A is orthogonal if

I being the familiar identity matrix. The matrix Y is symplectic if

(F-137)

#
where P is given by (F-123).
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It will now be shown that C.. is symplectic.
, j1

of the scalar quantity 5x T P 5x is

The time derivative

d (Sx T p 5x) = 6_:T P 5x + 5x T P 5k

Z * T * *5x T T p 5x +Sx P Z 5x

= 5x T (Z T P + P Z) 5x (F-138)

From the definitions of Z and P and the fact that G is symmetric,

it can be shown that (Z T P + P Z) is equal to the 6-by-6 zero matrix. Then,

d (5 xT *
-dT - In 5x) = 0 (F-139)

5x. T P 5x. = 5x. T _ 5x. = constant
-j -j -1 -1

(F-35) is substituted into (F-140).

5x.T _..T p C.. 5x. = 5x. T P 5x.
-1 j 1 31 -1 -1 -1

(F-140)

(F-141)

Since 5x. is arbitrary,
-I

* T * * *
C.. P C.. = P (F-142)

j1 j1

#
and hence C.. is a symplectic matrix.

j1, -I *
To find C.. , (F-142) is pre-multiplied by -P and post-multiplied

• -1 j1

by Cji .

* * * T _"
C..-I : _ p C.. _3 (F-143)

j1 j1
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Equation (F-143) is the same as (F-134). Thus, the triple matrix product
'_ -1

of (F-143) leads to the expression for C.. given by (F-135).

Equation (F-142) may be used to evaluate the determinant of Cji.
Since the determinant of a matrix is equal to the determinant of its tran-

spose,

(det Cji) (det P) (det Cji) = det P (F-144)

#

From the definition of P in (F-123),

det P = + 1 (F-145)

Then,

(det Cji )2 = 1 (F-146)

;,,¢

det C.. = + 1
j1 -

(F-147)

_k

Since Cii : 16 and the elements of Cji are continuous functions of time,

the plus sign is required in (F-147).

det C.. = + 1
j1

(F-148)

This equation, is useful in checking the numerical evaluation of the

elements of Cji.
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APPENDIX G

INTEGRATION OF THE VARIANT EQUATIONS OF MOTION

FOR ELLIPTICAL REFERENCE TRAJECTORIES

G. 1 Summary

The variant equations of motion are developed for the two-body

problem. The system consists of three second-order linear differ-

ential equations with variable coefficients. By choosing as a set of

coordinate axes one of the reference trajectory sets of Appendix A,

the sixth-order system is sub-divided into two uncoupled systems,

one of fourth order and the other of second order. The two uncoupled

systems are integrated directly to yield position variation relative to

the reference trajectory.

G.2 Variant Equations for Two-Body Motion

The variant equations for many-body motion are developed in

Appendix E. The matrix equations in the three reference trajectory

coordinate systems are (E-11}, (E-18}, and (E-19}. For two-body

motion the equations are considerably simplified by the removal of

all effects of disturbing forces.

Just as the r s z coordinate system was used to integrate the

general equations of two-body motion in Appendix B, so it has been

found that the same coordinate system is most effective in integrating

the variant equations of two-body motion. When the disturbing forces

are neglected in Eq. (E-18), z is equal to zero, and p may be replaced
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by r. Then the variant equations become

/5"r_ _2 5r- 2f 5s - "f 5s

2f 5r+'f 5r+ 8s _2 5s

oe

5z

r 3

/2

0

0 0 5r

5s

0 - 5z

(G-l)

This equation can be simplified by expressing 5s and its derivatives in

terms of 5f and its derivatives.

5s = r 5f (G-2)

5s = r 5f+ r 5f (G-3)

6s = r 5f" + 2 r 5f + r 5f (G-4)

These. three equations are substituted into the left-hand side of (G-l).

• °

/Sr" - _2 5r- 2 r f 5f- {2 r f + rf) 5f \

., °° °

2 f 5r + f 5r + r 5f + 2 r 5f + (r" - r _2) 5f

6z

-1

0

O/r/0 6s

-1 / 8z

(G-5)
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The equations of (B-32) are substituted into (G-5).

5z-" _2 5r- 2 r f 6f

eo

2f 6r+'f 5r+ r 6f + 2 r 6f :

\ /

_2 6r

0

- 6z

(G-6)

It is immediately apparent from (G-6) that the variant motion in

the reference trajectory plane and the variant motion perpendicular to

that plane are completely independent of each other. Therefore, the

two types of motion will be studied separately.

G.3 Three Solutions for Motion in Reference Trajectory Plane

The motion in the reference trajectoryplane will be investigated

first. This motion involves the first two equations of (G-6). The two

equations are coupled equations in the variables 6r and 5f. They may

be re-written as follows:

(D2 _ _2 _ _ _ 6r - 2 r _ D 6f -- 0 (G- 7_
r 3

(2 f D+'f) 6r+ (r D+ 2 r) D 6f = 0 (G-8)

where the operator D is equal to _.
dt
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These two equations constitute a fourth-order system in the vari-

ables 6r and 6f. Since 6f itself does not appear in either equation, the

System may be regarded as third-order in the variables 5r and D 6f.

The fact that 6f does not appear in either equation indicates that

6r is dependent on only the derivatives of 6f, not on 6f itself. One solu-

tion of the coupled equations is then

6r = 0 6f = k I (G-9)

where k 1 is an arbitrary constant.

The solution of the third-order system of (G-7) and (G-8) is ex-

pedited if the independent variable is changed from t to f. The symbol

F is used to represent _. The following substitutions may be made:

D = CG-I0)

(G-f1)

From (B- 58),

Ff=
- 2 ne sin f (I +e cos f)

(1 - e2) 3/2

2 e sin f f (G-12}
1 + e cos f
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(G- 12) is substituted into (G- 11).

D 2 = _2 (F 2 2 e sinf
1 + e cos f F) (G- 13)

From (B-39), (B-60), and (B-61),

2
1 + e cos f (G- 14)

The.coefficient of 5f in (G-7) is

2 r fD 2 a (1- e 2) _2- F
1 + e cos f

(G- 15)

Equations (G-13), (G-14), and (G-15) are incorporated into (G-7),

and the resulting equation is multiplied by

(1 + e cos f)

_2

[(1 + e cos f) F 2 - (2 e sinf) F- (3+ e cos f)] 5r

- 2 a(1 - e2) F 5f = 0 (G- 16)
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The coefficient of 6r in ((_-8) is

(2f D+ 'f'): 2 i 2 (F -
e sin f

1 + e cos f
•) (G- __)

With the aid of (B-65) and (B-66), the coefficient of 5f in

(G-8) may be written as follows"

D 2 .-. (F 2 _r +2rD=rf 2 2 e sin f

1 ÷ e cos f
F)+ 2rfF

e sin f f) F
= rf2 F2 + 2f (r- 1 ÷ e cosf r

= r _2 F 2 (G-18)

(G-l%) and (G-18)are substitute4 into (G-8),

(G-2) is multiplied by

and this equation, like
e

(1 + e cos f)

_2

2 [ (I + e cos f) F - e sin f] 6r + a (i - e 2) F 2 6f = 0

(G-19)

The variable 6f may be eliminated from the coupled equations

(G-16) and (G-19)by pre-multiplying the former by the operat or F,
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multiplying the latter by 2, and then adding.

[(1+ ecos f) F 3- (3 e sin f) F 2

+ (1+ e cos f) F- (3e sinf)] 5r = 0 (G-20)

The terms of (G-20) may be re-grouped as follows:

[(1+ ecos f) F- (3esinf)] (F 2+ 1) 5r ffi 0 (G-21)

Two solutions of (G-16) are obtained from

(F 2 + 1) 6 r 0 (G-22)

These solutions are obviously

6r = k 2 cos f

6 r = k 3 sin f

The solution of (G-23) is substituted into (G-16) in order to

solve for F 6 f.

(G-23)

(G-24)

F6f=-
k2

a(1 - e 2)
[2 cos f + e (cos 2 f - sin 2 f)] (G-25)

Then 6 f is obtained by integration.

6f-
k2

a (1 - e 2)
(2 +e cos f) sin f (G-26)

The solution of (G-24) is handled in similar fashion.

87



9.k 3
F 6f - (1 + e cos f) s.inf (G-27)

a (I e _')

k 3
6f = -- (2+ e cos f) cosf

a (I e 2)

(G-28)

G. 4 Fourth Solution for Motion in Reference Trajectory Plane

The first three solutions of Eqs, (G-7) and (G-8) were obtained

relatively easily. The fourth solution require_s considerably more

mathematical manipulation.

One technique for obtaining the fourth solution is to substitute

the two known solutions, (G-23) and (G-24), successively into (G-20)

and by so doing to reduce (G-20) from a third-order equation to a

first-order equation, which can be solved directlyby the use of an

integrating factor. A method which might be considered mathematic-

ally more elegant is the method of variation of parameters. Both

methods are described in detail in the first chapter of Hildebrand (41)

The Second method is used in the following analysis.

InEq. (G-21), let

x = (F 2 + I) 8r (G-29)

Then (G-21) may be written as follows:

dx 3e sinf
" I+ ecosf x = 0

(G-30)
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The variables x and f are now separable.

dx _ 3e sinf df= 0 (G-31)
x 1 + e cos f

This equation may be integrated directly. The result of the integration is

logx+ 3log(l* e cos f) = logC (G- 32)

where C is an arbitrary constant. Then,

x = (F 2 + 1) 6r = C
(1 + a cos 0 3

(G- 33)

• Since the two homogeneous solutions of (G-33) are known to be cos f

and sin f, the method of variation of parameters may be used to get the

particular solution of (G-33). In this method, the solution is assumed to

• be of the form.

5r = ucos f+vsinf (G- 34)

where u and v are functions of f. The variables u and v must satisfy the

following two criteria:

du cos f + dv sin f = 0 (G-3'5)
df df

du d (cos f) + dv d(sinf)

df df df df

du sin f + dv
--- d-7

C
(G-36)COS f

(1 + e cos f)o
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The two simultaneous equations (G-35)and (G-36)are solved for

du dv
and _-.

d u C sin f (G-37)

= - f)3(I + e cos

d v C cos f (G-38)

--d-P = (I + e cos f)3

Equation (G-37) may be integrated directly.

= _ C p sin f df _ C d (1 ÷ e cos f)

u j (1 + e cos f)3 e (1 + e cos f)3

C (G-39)

2 e (i + e cos f)2

The integration of (G-38) is less obvious. It is desirable to

iZemove the polynomial in the denominator by making a change of

variable from the true anomaly f to the eccentric anomaly E.

Equations (B-52), (B-54), and (B-64)are used in making the change.
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v = C; cos f df

-j (1 + e cosf)3

Cf cos E - e (l -e cos E) 3 (1 -e2) 1/2= I - e cosE " (l-e2) 3 " l-e cosE

C ;(1- e cos E)(cos E- e) dE

ffi (1-.... e2) 5_2 d

e+(l+e 2) cos E - e cos 2E] dE

dE

(G-40)

The individual terms of (G-40) can now be integrated.

[-e E + (l+e2)sinE- (E + sin E cos E)]

-3eE + [ 2 (!+e 2) -e cos E] sinE} (G-41)

No constants of integration have been added in (G-39) and (G-d1)

because such constants, which would simply be multiplied by cos f

and sin f respectively, may be incorporated into the constants k 2 and

k 3 of Eqs. (G- 23) and (G- 24).

In (G-41), the eccentric anomaly E may be written in terms of the

mean anomaly M and sin E by the use of Kepler' s equation (B-55). Then

the terms in E may be converted back to functions of f by using

(B-53) and (B,54).
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V --

C

2 (l - e2) _/2

_- 3 e [ M + e (1 -e2) 1/2 sin f" i+'e cos r- ][

÷ [ 2 (l÷e2) _ e (cos f+ e) i (l-e2) 1/2 sin f _
l+e cos f " l+e cos f

,#

C [ 3 e M + (2+e cos f) sinf ]

2 (I - e 2) (1 - e2) 3/2 (1 + e cos f)2

(G-42)

Equations (G-39) and (G-42) are substituted into (G-34) to

yield the fourth solution for 5 r.

6r= C

. cos f 3 eM sin f2e (1 + e cos f)2 2 (1 - e2) 5/2

(2+e cos f) sin 2f ]
+

2_1-e2)(1 +e cos f)2 J

I 1
C _ 3 e M sin f + "i+e cos f

1 - e 2 3/2
2 (1 - e 2)

(G, 34)

The term

: C
cos f

in Eq. (G-43) may be incorporated into the constant k 2 of Eq. (G-23),
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so that the fourth solution becomes, finally,

[ 2 (l-e2) 3/2 1
5r =k 4 _ 3e M sin.f + l.-I-e.cos f (G-41)

where

C
k4 = 2

1-e
(C,-4B)

To determine the fourth solution for 6f from' (G-16), the first

and second derivatives of (G-44) with respect to f must be found.

The derivative of M with respef_t to f is obtained from (B-56) and

(B-SS).

F (M) = _ =
f,"

(1 - e2) 3/2
i

(1 + e cos f)z
(G-46)

The derivatives of (G-44) are

+
e sinf t(l+e cosf)3

[_ (1 _e2) 3]2
k4 e M cos f,, L ,,, , ,

+

M cos f + (I-e2)3 ]2,,.,,,sin f 1(l + e cos 0 2

e sin f
,

2 (1 + e cos 0 2
(G-47)
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2 (l- 3/2 -M sin f ÷ _](1-e2)3/2 cos f

-I-
e cos f e 2 sin 2 f

i

2(1+e cos _'i2 * (1+e cos Z)3

F
= | 3 e M sin f

k4
•L " e2)312(1 - 2

1 1 -e 2
m ,j i, ÷

1 + e cos f (l+e cos f)3

When (G-47) and (G-48) are substituted into (G-i6),

expression for F (6f) is

F (6f) =
3k 4 F2e M (l+e cos f) sinf

2a (1 -e 2) (1 - e 2) 312L

the resulting

.Integration by parts is used to solve for 5f from (G-49).

dM = (1-e cos E) dE = (l-e2) 3j2 df

(l+e cos f) 2

Note that

(G-S0)

Therefore,

e M (l+e cos f) sin f df = - M (l+e cos f) d (l+e cos f)

= -d[½ M (1 + e cos f)2]+

M (1 + e cos f)2]+

(l+e cos f)2d M

½ (1-e 2) 3/2 df (G-B1;)
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The integral of (G-49) is simply

_f = -
3 k 4

2a (1-e2) 5/2

M (1 ÷ e cos f)2 (G-52)

No constant of integration is needed in deriving 6f from F ('6f)

because of the presence of the constant k 1, which is the first

solution of 5f.

G. 5 Solutions for Motion Normal to Reference Trajectory Plane

The differential equation for the motion normal to the reference

trajectory plane is the third equation of (G-6).

(D 2 + --_--) 6z = 0 (G-53)
r

To solve for 6z, the independent variable is changed from t

to the eccentric anomaly E. The symbol J is used for the operator
d

. The operator D 2 in (G-53) can be expressed in terms of J and j2.

D=EJ

= I_. J (E J) = E [ 1_. j2 +D 2

(c-54)

J ] ((]-55)

From (B-57),

dE
ne sin E = _ e sin E _,

(1-e cos E) 2 1-e cos E
(G-56)
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Then,

D2 = 1_.2
(1-e cos E)

[(1-e cos E) j2 _ (e sin E) J] (G-57)

From (B-49), (B-57), and (B-62),

2 3 ]_2n a

r 3 a 3 (1-e cosE} 3 (1 - e cos E)
{G-58)

(G-57) and (G-58) are substituted into (G-53), and the equation is

multiplied by

1- e cos E

_]2

[(1-e cos E} j2 _ (e sin E) J+ 1] 5z = 0 (G-59)

Theterms in (G-59) may be re-arranged as follows"

[(j2 + 1) - e (cos E J + sin E) J] 5z = 0 (G-8o)

From the appearance of (G-60), two possible trial solutions for

5z are immediately suggested, namely, sin E and cos E. It is found

that sin E is indeed a solution. However, when 6z = cos E is tried,

the result is

[(j2 + 1) - e (cos E J + sin E) J] (cos E) = e (G-61)
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Since e is a constant and since the coefficient of the undifferentiated

term in (G-59) is unity, the second solution is (cos E - e).

The two solutions may be expressed in terms of the true anomaly

f by making use of (B-52), (B-53), and (B-54).

k5 sin f

5z - (1-e2)112 sine = k 5 1+ e cos f (G-62)

k 6 cos f

5z - (l-e2) (cos E - e) = k 6 l+e cos f (G-63)

G. 6 Complete Solution for Position Variation

The results of this appendix may be summarized by tabulating

the complete solution for the position variation vector 5r in the

r s z coordinate system. The component 5s, in the transverse

direction, is related to 5f by the equation

5s = r 5f = a(1-e2) 5f
l+e cos f (G-64)

From Sections(G. 3), (G. 4), and (G. 5), the complete solution

in terms of the variables f and M is

5r = k 2 cos f + k 3 sin f

+ k4[ -23eMe::_]:(1- 1 + e cos f
(G-65)
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5s -
k 1 a (1-e 2) k 2 (2+ e cos f) sin f

1 + e cos f l+e cosf

k 3 (2+e cos f) cos f 3 k4 iV}(l+e cos f)
+ (G-66)

I+ e cos f 2) 3/22 (i e

k5 sin f k 6 cos f

6z -l+e cos f + I+ e cos f (G-67)

The variant motion in the z direction is an undamped oscillation'

whose period is equal to the period of the reference trajectory.

The variant motion in the reference trajectory plane is more

easily analyzed if the equation for 6s is re-arranged as follows"

k I a (I - e 2) ' 1

}6s - l+e cos f - k 2 (I + l+e cos f ) sin f

1
+ k3 (I + I+ e cos f ) cos f -

3 k4 M (1+e cos f)

2 (1 - e2) 312
(G-68)

In addition to an undamped oscillation whose period is equal to

that of the reference trajectory, the variant motion in the reference

traje'ctory plane contains an oscillation that is moduldted by a ramp

function. Thus, the motion in the reference plane is dynamically

unstable; the amplitude of the variation in position increases steadily

as the number of periods is increased.

It should be pointed out that this analysis is based on linear per-

turbation theory; the conclusions drawn are applicable only as long

as the position variations from the reference trajectory are small.
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APPENDIX H

DETERMINATION OF VARIANT MOTION FROM

FIRST VARIATIONS OF ORBITAL ELEMENTS

H. 1 Summary

First variations are taken of the six orbital elements that define

the motion along an elliptical reference trajectory. The motion along

the actual trajectory is a function of these six variations and the known

characteristics of the reference trajectory. The basic analysis is

applicable to ellipses of low eccentricity (approximately circular} as

well as ellipses of moderate eccentricity; it is not applicable when e

is equal to unity.

The general equations are applied to the particular case when e

is not very close to either zero or unity. It is shown that the resulting

equations for position variation are analogous to those developed in

Appendix G.

H. 2 Introduction

In the variant two-body problem, if the reference trajectory is

known to be an ellipse of moderate eccentricity, and if there are no

disturbing forces, then the actual trajectory, which is assumed to

differ only slightly from the reference trajectory, must also be an

ellipse of moderate eccentricity. One method of attacking the variant

problem is to assume small variations in each of the six known or-

bital elements of the reference trajectory and to determine the effect

of these variations on position as a function of time. It is convenient

to use, instead of position on the actual trajectory, the difference be-

tween position on the actual trajectory at time t and position on the

reference trajectory at the same time. This difference, in vector

form, is 5r.

This approach to the problem is primarily geometric; it depends

on the a priori assumption that the variant trajectory is an ellipse.
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In contrast, the approach of Appendix G is analytic; it requires no

such assumption. Indeed, the solution of Appendix G, with its secular

term, hardly resembles any of the more familiar forms of the equations

of elliptical motion.

H. 3 Effect of Variation in Euler Angles

The x y z coordinate system, as defined in Appendix A, is re-

lated to the vehicle's reference trajectory plane. A new coordinate

system, designated x' y' z', will now be introduced, with the axes of

the new system bearing the same relationship to the actual trajectory

that the axes of x y z bear to the reference trajectory. The origin of

the new system is at the center of the sun. The x' - y' plane is the plane

of the actual two-body trajectory. The positive x'-axis lies in the

direction of perihelion from the sun. The positive y'-axis is 90" ahead

of the positive x'-axis in the direction of vehicle motion. The positive

z'-axis is parallel to the angular momentum vector of the actual tra-

jectory. The x' y' z' coordinate system, like the x y z system, is a

non-rotating coordinate system.

.The Euler angles defining the orientation of the x' y' z' system

relative to the x y z system are 5_ 6i, and 5¢0, as shown in Fig. H. 1.

Each of the three angles is regarded as a variation from its reference

value, which is zero in each case. If the launch guidance were perfect,

the x' y' z' and x y z systems would coincide.

The prime notation is used to designate characteristics of the

actual trajectory. Thus, r' is the position vector on the actual tra-

jectory, and f' is the true anomaly on the actual trajectory.

The vector r' can be resolved into its components along the r, s,

and z axes of the reference trajectory local vertical coordinate

system. The symbols used for the components are r' r, r's, and r'z.

From Fig. H. 1,

r !

r
= r' [cos (f' + 6w) cos (f - 6_)

+ sin(f' + 6w) cos 6i sin(f - 6_)] (H-I)
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r' = r' [-cos (f' ÷ 6w) sin(f - 5_)
S

+ sin(f' + 6w) cos 6icos (f- 6_)] (H-2)

r' = r' sin(f' + 60)) sin 6i
Z

(H-3)

The components of position variation vector 6 r along the r,

z axes are

6r--r i -r
r

s, and

(H-4)

6S "r' (H-5}
S

6z = r' (H-6)
Z

The fundamental assumption of linear perturbation theory is that all

variations from reference values be small. Thus, in Fig. H. 1, the

separation of P' from P must be small, and, as a consequence, angle

6i must be small. It is also necessary that the difference between

(f' + 6w) and (f - 5i2) be small. This difference may be written as

where

(f' + 560) -(f- 6_)= 6f+ 6¢ (H-7)

6f = f' - f {H-8)

6¢ = 6(w + E$) (H-9)

When the reference trajectory has appreciable eccentricity, it is

necessary that the major axis of the actual trajectory be situated close

to the major axis of the reference trajectory if P' is to be close to P for

all values of f. Then, 6 _ must be small, and, since (6 f + 6 _b) is always

small, 6f must likewise be small. It should be noted that the individual

angles 5 9 and 6f need not be small if the reference trajectory is circular

or nearly circular, because for such trajectories a large displacement

of the x'-axis from the x-axis has no appreciable effect, per s___e,on the

distance of P' from P.

102



When the usual small-angle assumptions are applied to 5i and

(Sf + 5¢), the components of 5r become

5r = r' cos {Sf+ 5¢)- r = r' - r (H- 10)

5s = r' sin (Sf+ 5¢)= r' (Sf+ 5¢) (H-11)

5z = r' 5i sin(f' + 5_)

In the last equation, (f' + 6 ¢_) may be written as

f' + = (f + 5f)+ (6¢ -

= (f - 5¢)

(H-12)

(H-13)

Since 5 r is a small quantity, linear theory permits the following

additional simplification of Eqs. (H- 11} and (H- 12).

5s = (r+ 5r)(Sf+ 5¢)= r(Sf+ 5¢) (H-14)

5z = (r + 5r) 5i sin [(f - g_) + (Sf + 5¢)]

= r 5i sin(f - 5_) (H-15)

Equations (H-10), (H-14), and (H-15) show the effects of variations

in the Euler angles on the components of 5_r. The radial component 5 r

is unaffected. The transverse component 5 s varies linearly with 5¢.

The orthogonal component 5z depends upon both 5i and 5_.

H. 4 Variation in Eccentric Anomaly

As an intermediate step in the determination of 5r and 5 s, it is

useful to derive an expression for 5E, the variation in the eccentric

anomaly, in terms of variations in the orbital elements.

The discussion in the last section concerning the angle _ (5f + 6 ¢)

is applicable to both (6E + 5¢) and (6M + 5¢); i.e., (SE + 5¢) and

(6 M + 6 ¢) are small angles regardless of the eccentricity of the

reference ellipse; if the eccentricity of the reference ellipse is not

near zero, 6E and 5M are individually small, but they need not be if
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the eccentricity is near zero. These considerations also apply to 5 M 0,

the variation in the mean anomaly at epoch. To preserve generaIity,

the angles 6E, 6M, and 6M 0 will not be assumed to be small in the

initial development. Then

E' = E + 6E = (E - 5_) + (6E + 6¢) (H- 16)

M' = (M - 8¢) +(SM+ 6¢) (H- 17)

!

M ° -- (M 0 - 8_b) + (SM 0+ 6_) (H-18)

From Eqs. (B-47) and (B-55),

M = nt+ M 0 = E - e sinE (H-19)

For the actual orbit, at time t,

!

M'= (n+ 6n) t+ M o = E' - (e+ 6e) sinE' (H-20)

(H-19) is subtracted from (H-20).

(SM+ 5_b) = tSn+(SM 0

= (5E + 6_) - (e+ 5e) sinE' + e sinE (H-21)

The variation 5n may be expressed in terms of 6a by the use of

(B-62).

6_ = 0 = 5(n 2 a 3) = 2 na 3 5n+ 3 n 2 a 2 6a (H-22)

Also,

3n
6n - 5a

2a

(H-23)

sinE' = sin(E - 5_) + (SE + 5¢).cos (E - 6¢) (H-24)
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(H-23) and (H-24) are substituted into (H-21), second-order terms are

neglected, and the resulting equation is solved for (6E + 6 @).

6E + 6@ =

nt 6__aa+ (5M0 + 6@) +(e + 5e) sin(E - 6@) - e sinE
2 a

1 - e cos (E - 6@)

H. 5 General Equations for Components of Position Variation

Equation (B-49) is used to determine 6 r.

(H-25)

On the actual trajectory,

r = a(1 - e cos E) (H-26)

r' = (a + 5a) [1 - (e + 6e) cos E']

(a÷ 6a)<l -(e + 6e) [cos (E - 5@) - (6E + 6¢) sin(E -

= a [1 - (e+ 6e) cos (E - 5@)+ e(6E + 6@) sin(E - 6@) ]

+ [I - e cos (E - 5@)] 6a (H-27)

6r = r' - r = a[e cosE - (e+ 6e) cos(E - 6@)

+ e(SE + 6@) sin(E - 5@)]+[1 - e cos (E - 6@)] 6a

From (H-14), the deviation in the transverse direction is

5s = r(6f+ 6@) = r' (6f+ 6 9 )

= r' sin(6f+ 6@) = r' sin [f' - (f- 5_b)]

" r' [sinf' cos (f- 6@) - cosf' sin(f- 6#)]

(H-28)

(H-29)
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From (B-53),

sin f' =

[1 -(e + Be) 211/2 sinE'

1 - (e + Be) cosE'

(a + 8a)
[1 - (e+ Be) 211/2 [sin(E

r*

- 8#) + (BE + 8_b) cos (E - S#)l

(H-3.0)

From (B- 54),

COS fl =
cos E' - (e + 8e)

1 - (e+ Be) cos E'

(a+ 8a)

r !

[cos (E - 5#) - (BE + 8_b) sin (E - 5#)- (e + 6e)l

(H-31)

(H-30) and (H-31) are substituted into (H-29). When higher-order

terms are neglected, the expression for 8 s is

8s = a (1 - e - 2 e Be) 1/ sin(E - 8_) cos(f- 8_)

-[COs(E- 8_)- (e + Be)]sin(f- 8_)

+ [(I - e2) I/2 cos (E - 8#) cos (f - 8#)

+ sin(E - 8_) sin(f- 8_)] (BE + 8_)} (H-32)

Equations (H-28) and (H-32) are the general equations for 8r and 8 s,

applicable over a wide range of eccentricities for ellipses, from e = 0

to e approaching unity as a limit. The equations are not applicable when

the reference ellipse is rectilinear (that is, when e is equal to one), for

in that case a positive variation in e causes the actual trajectory to be-

come hyperbolic.

(H-28) and (H-32) are used in conjunction with (H-25) to express 8r

and 8 s in term s of variations in the elements a, e, M 0, and _b. 8zis

independent of variations in these elements.
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H. 6 Position Deviation for Trajectories of Moderate Eccentricity

Elliptical reference trajectories for which e is not very small

(close to zero) or very large (close to unity) may be referred to as

trajectories of "moderate" eccentricity. Practical trajectories for

voyages to neighboring planets fall into this category. The general

equations of Sections H. 4 and H. 5 will be used to obtain simplified

expressions for 5 r and 6 s when the eccentricity is moderate.

Whenever the eccentricity is appreciably greater than zero, if

the position variations are to remain small, 5f, 5E, 6M, 6M 0, and

59 must be small angles. Then Eq. (H-25) becomes

(SE + 5 9 ) (1 - e cosE - e 59 sinE)

_3 5__a
- n t + 6M 0 + 5 9 - e 6 9

2 a
cosE + sinE 5e

(H-33)

_3 nt 6._aa+ 6M 0 + sine 5e

5E = 2 a (H-34)

1 - e cos E

From (H-28), the equation for 5r is

6r : a [-e sin'E 5 9- cosE 6e + e sinE (SE + 69) ]

+ (1 - e cosE) 6a (H-35)

(H-34) is substituted into (H-35)

6r = I 3 n a e sin E 7a(1 - e cosE) - 2 tJ 5_aa1 - e cos E a

ae sine a(cosE - e)
5 M 0 - 5e

1 - e cosE 1 - e cosE
(H-36)
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With the use of the relations of Appendix B, {H-36) reduces to

( ,)0aV6r = r 3 v __ +r 6M 0 _ acos f 6e 1H-37)
2 r a n

The derivation for 6 s proceeds in a similar fashion from Eqs. (H-32)

and (H-34) and the standard forms of Appendix B. Note that

e2- 2e 6e) 1/2 = [ (l- e 2) (1 2e 6e_/1/2-"(1-
2,J

1 -e

= {1 - e2) 1/2 -

(1 - e2) 1/2

Then 6 s is obtained as follows:

5s= a_F(1- e2) 1/2- e 6e

LL
(1 - e 2) 1/2

e 6e (H-38)

(sinE - cos E 6 4 ) (cos f + sinf 6 4 )

- (cosE - e+ sinE 6 4 - 6e) (sinf- cosf 6 4 )

+ [(1 - e2) 1/2 cos E cos f + sin E sin f] (6E + 64) >

='a<[ e sinE cosf+ sinf] 6e
{1 - e2) 1/2

+ [(1 - e2) 1/2 (sine sin f- cos E cos f) + (cos E - e) cos f

- sinE sin.f] 54 + (I - e2) I/2 (SE + 54) }

[ sin f
a

L
I + e cos f

5e+ (1 - e cosE) 6 4 + (1 - e2) 1/2 6El

_3 na(1 - e2) 1/2

2

1 - e cos E

t 6a + a(1 - e2) 1/2
6 M 0

a I - ecosE

+a <_+ec°s_)+ecos sinf 6e+a(1- ec°sE) 64

3
m _ V

2 s vs ( )t 5___a+ __ 6M 0 + a + r

a n 1 - e 2

sinf 6e + r 64 (H-39)
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H. 7 Relation between Solution of Appendix G and Solution of Appendix H

Since the component equations of Appendix G, specifically (G-65),

(G-66), and (G-67), are written in terms of the variables f and M,

Eqs. (H-37), (H-39), and (H-15) of this appendix will be written in terms

of the same variables so that the two solutions can be compared.

From (H-37),

3

-- nae sinf

6r = ,a(1 - e 2) _ 2 t

1 + e cos f (1 - e 2,_ 1/2

6a

a

a e sin f
+ 6M 0 - a cos f 6e

(1 - e2) 1/2

[
= a(1 - e 2) /- 3 Me sinf

L 2(1 - e 2)3/2

1
+

1 + e cos f

ae
+

• (1 - e2) 1/2
6 3 5a ]sinf M0 +2 M0 --a -

The expression [ 5M 0 + 3/2 M 0 5a/a] may be simplified.

a cos f 6e

(H-40i

5M 0 = 6 (- n t o) = - n 6t o - t o 6n

3 6a
= - n 6t 0 -- M 0

2 a
(H-41)

6M 0+3 MO 6_aa = _ n 5t o
2 a

Finally,

6r = a (1 - e 2) +

1 + e cos f I 6a
a

(H-42)

n a e sin f 6t o - a cos f 6e

(1 - e2) 1/2

(H-43)
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From (H- 39),

8S = -
3 n a(l + e cos f)

2 (1 - e2) I/2

t 5a + a(1 + e cos f)

a (1 - e2) 1/2

2÷ e cosf)

+a sinf 6e+ a(1 - e 2)

+ e cos 1 + e cos f

= a(1 - e 2) I- 3 M(1 + e cos f) 5__aa

[ 2 (I - e2) 3/2" a

nae cos  t0
(i - e2) I/2 + e cos

+a

+ e cos

sin f 5e

+
a ( I - e 2)

1 + e cos f I5 n 5t O ]- e2)312(1-

5 M 0

(H-44)

From (H-15),

6Z =
a(l - e 2)

1 + e cos f
6i (sin f cos 5_ - cos f sin 5_) (H-45)

When (H-43), (H-44),

and (G-67), respectively,

identical if

and (H-45) are compared with (G-65), (G-66),

it is evident that the two sets of equations are

n 5t 0
k 1 = 5_ (H-46)

(1 - e2) 3/2

k2= -aSe

nae
k3=-

(I - e2) I/2

(H-47)

5t o (H-48)
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k 4 a ( 1 e 2) 6a
a

(H-49)

k 5 = a(1 - e 2) 6icos 5_ (H-50)

k 6 = - a(1 - e2) 6i sin 6 (H-51)

Thus, despite the presence of the secular term, the motion des-

cribed by Eqs. (G-65), (G-66), and (G-67) is elliptical motion. The

secular term is simply a manifestation of the fact that the period of

the actual elliptical trajectory differs slightly from the period of the

reference trajectory.
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APPENDIX I

VARIATION IN POSITION, VELOCITY, AND ACCELERATION

I. 1 Summary

The equations for position variation and Velocity variation are

expressed in vector form and also in matrix form in the three re-

ference trajectory coordinate systems. An expression developed for

variation in acceleration serves as a check of the basic solution of

the variant equations of motion.

1.2 Vector Forms

It is evident from Fig. A.2 that components along the x, y axes

and p, q axes may be derived from the r, s components by means of

the following coordinate transformations:

<6xI icosfsin l<r)
6y sin f cos 6 s

(I-l)

6p cos 7 -sin r

6 q \sin 3' cos s

(I-2)

With the aid of these transformations and the relations of Sections

B.8 and B.9, Eqs. (H-15), (H-37), and (H-39) may be combined into a
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single vector equation.

.6r=v -_t-- Uq

6a

+r-K- u--r

°o+r0,)Us- "--X
+r sin(f- 6_) 6iu (I-3)

--Z

The velocity deviation vector 6v is obtained by vector differ-

entiation of 6 r. The angular velocity of the p, q axes is _, the angular

velocity of the r, s axes is _, and the x, y, z axes are non-rotating.

(_0 _I6vo-v_ n 2 -up

+ • 6MO a (_t +v) _a]uq[v --n-- - _

a • -r

r} 6a + y 6e+ r 6¢ u s
a 1 -e 2

+ [r sin (f-6_) + r fcos (f- 6_)] 6iu
--Z

(I-4)
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The terms in (I-4) may be simplified when the proper substitutions
i

are made for f, % r, and y from the relations of Appendix B.

( 5MO 3 5a )The coefficient of - - t in (I-4) is
n 2 -_-

-vgu +vu : (apU +a Uq) =arU (I-5)-p -q -p q --r

The additional terms involving
5a

-- are
a

-_vu +ru +rfu =_v._.u (I-6)-q --r • --s q

6e
The coefficient of ---

1 -e 2
is

+yu =- rfsinfu +(rsinf+rfcosf) u
--s --r --s

=- vsinfu +v cos fu
--p s --s

(I-7)

The coefficient of 5 _ is

- rfu +rUs =-vu-r -p
(I-8)
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The coefficient of 6i u is
--Z

i" sin(f-' 5_)+ r fcos (f- 5_)

' = v[sin ysin(f- 5_)+ cos y cos (f- 5_)]

=vcos(g- (I-9)

With these substituions, Eq. (I-4) becomes

v[ sin f

v 5a (SMo 3 _)-5 -g-u +a t-q r n _" Ur

v cos f

+ s 5eu +vcos (g- 5_) 5iu z (I-10)2 --s
1- e

I. 3 Component Equations in Matrix Form

The component equations for 5r and 5v in the three reference

trajectory coordinate systems are obtained from (I-3) and (I-10).

Equations (I-11), (I-12), and (I-13) relate position variation and

velocity variation in the reference trajectory plane to variations in

the elements a, M 0, e, and ¢. Equation (I-14) relates 5z and 5v z

to variations in i and _.
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6z y -x 6 i cos 6

5i sin 5_
6vz Vy - vx

(I-14)

1.4 Variation in Acceleration

The variation in acceleration may be obtained by vector differen-

tiation of (I-i0), and the result can be used to check the solution obtained

for the matrix differential equation

6a = G 5r (I-15)

The result of differentiating (I-10) is

/ " J6a = - v sin f v}cos f vg 6a
-- \1- e-2 5e+ 5¢ - 5e +1 -e 2 "-2- a Up

+•[ ). ]- vg (.s_in.f 5e + 5 _ v 8a u
\1 - e2 2 a -q

I rC O+. 3 t_ - a s
n 2 a 2 r a l_e 2

• }v cos f- v sin f+[ar C23 s.

_e
I u_r

u S

+ Iv cos (g - 512) - vg sin (g - 512)] 6i u
--Z

(I-16)
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The coefficient of 6 _ in (I-t6) is

- (VUp + v gUq) =-(aqUp- ap Uq)

= - a r (sin _ u-p

The coefficient of
1 5a

2 a
is

- cos _Uq) = a ru s (I-17)

V U -VU =- a U
-p -q p --p

-a u =-a u
q --q r --r

The coefficient of n - -2

a ru r+ a r fu s -_-_ (2ru r- r fu s )

(I- 18)

=_ (2 v u - v su s )
r 3 r -r ..

(I-19)

6a
The complete coefficient of ----: is

a

Vgu v u -
.--_-_p- _ -q 3 (a t+ a r) u r 3 ft ur - 2 ar --s

1 3 }_
= ---a il - t

2r--r
3

(2v ru r- v su s ) --_ a ru r

= _-_-.r3[ (2r- 3Vrt) Ur+-23VstU_s ] (I-20)
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One of the terms in the coefficient of 6 e contains the derivative

"_'s" A substitution may be made for Vs by utilizing the fact that the

angular momentum of the reference trajectory is constant.

h=r2f=rVs

= v +rv =0
S S

rv .

- S-.v f
S r r

(I-21)

(I-22)

(I- 2 3)

The complete coefficient of
6e

1 - e 2
is

(-v sin f- v fcos f) u - v g sin fu - v f cos fu
--p --q s --r

+ (v s cos f- v s fsin f) u--S

= a sinfu - vfcos fu -v fcosfu
r --s --p s --r

- f (v r cos f+v s sin f) u--S
(I-24)

The product v s f may be expanded as follows:

v s f= r _2 = h 2 =__h 2 ___ = _ a (1 - e 2)
r--3- _ r 3 r 3

(I-25)
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With the aid of (I-25), the coefficient of becomes

_ + (a r- v f) sinfu- 2v s f cos f u r s -s

= _ _- 2 a(1 - e 2) cos f U
+[- y-a(1 - e 2) sin flu s

(I-26)

The coefficient of 6 i u z in (I-16) is

vcos {g- 6_ - vgsin (g- 5_2)

= ar [sin-lcos (g-5_2)+cos-/sin(g- 6R)]

= a r sin (f - 5_) (I-27)

The relations for the terms comprising 5 a, as expressed in

Equations (I-17) through (I-27), contain components only in the r,

s, and z directions. On the basis of these relations a matrix equation

can now be written for 6 a in terms of the variations in the orbital

elements.
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When Eq. (I-28) is compared with Eqs. (I-12) and (I-14), it may

be seen that

686ar
a S

az y

r

r2 o o

o -1 i
0 0 -

6r

6s

6z

(I-29)

The 3-by-3 diagonal matrix on the right-hand side of (I-29) is

identical with the matrix on the right-hand side of (G-1). This is the

G matrix in the r s z coordinate system. Thus the solution for 6r

given by (I-3) has been checked.
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APPENDIX J

LOW-ECCENTRICITY REFERENCE TRAJECTORIES'

J. 1 Summary

Equations are developed for position variation and velocity variation

in low-eccentricity reference orbits. The differential equation solution

of Appendix G is shown to be applicable to low-eccentricity orbits as well

as orbits of moderate eccentricity.

J. 2 Introduction

Although low-eccentricity trajectories cannot be used as transfer

orbits on interplanetary voyages, the variant equations for such trajec-

tories are derived in this appendix in order to illustrate the applicability

of the general equations developed in Sections H. 4 and H. 5. The results

obtained" are of value in preliminary qualitative studies of the motion of

satellites in circular or near-circular orbits.

J. 3 Position Variation and Velocity Variation

In order to distinguish the results of this appendix from those of

previous appendices, the subscript o will be added to all designations for

orbital e'lement s.

The distinctive feature of the reference orbits now being considered

is that the eccenti-icity e is of the same order of magnitude as the orbital

element variations. This characteristic is_used in deriving expressions

for 6r and 5s from Eqs. (H-25), (H-28), and (H-32.)
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For low-eccentricity orbits,

l-e ocos(E-69o) = I (J-l)

sin E -

r= a
0

(I - e:) I/2sin f

1 + e cos f
O

= sin f

(J-2)

(J-3)

cos E =

cos f + e
O

1 + e cos f
O

= cos f + e
O

V _

no ao (l + eO cos E) 1/2

(I - e cos E) I/2
O ,

= no ao

(J-4)

(J-5)

n a e sinf
O O O

v r = - n a o e o sin f
(I - e2) I/2 o

o-

n o aO (I + eO cos f)
V =

s e 2"1/2 = no a° = v
(I - ° J

(J-6)

(J-7)

as

In Eq. (H-25) the term (e ° + 6e o) sin (E- 590) may be expanded

(e o + 6e o) sin (E - 69o) = (e ° + 5eo)(Sin f cos 69o - cos f sin 690)

(J-8)
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The angle (SE+ 59o), which must be small, is

6a

_- 3 o +(5 + 690)5E+ 590 - _n ot_ Moo
O

-sinf [eo - (eo+6e o) cos 690] -cosf (e° +6e o) sin 590

(J-9)

In Eq. (H-28), the term e o (SE + 69o) is of second order in the

small quantities. Therefore, the expression for 5r is simply,

[ 5a° +cos f Ee- (eo+ 6eo) cos 59o ]-- o

From Eq.

- sin f (e °

(H:32),

+ 5e o) sin 590 t

5s : a ° Isin (E -f) + (eo+ 5e o) sin (f- 590)

(J-lO)

+ (SE + 690) cos (E - f)] (J-11)

sin (E - f) = sin E cos f - sin f cos E = - e sin f
O

(a-12)

cos (E - f) = cos E cos f+ sinE sinf = 1+ e cos f= 1
O

(J-13)
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Equations (J-9), (J-12), and (J-13) are substituted into (J-ll).

I 6a °{is _a ° -_not_ + (6Moo+ 6_o)

-2sinf [eo-(eo+ 6eo) COS 5,o l

-2cos f le o+ 6e olsin 6_o 1
(J-14)

From Eq. (H-15),

Sz -- a ° 6i o sin (f- 6f_o) (J -15)

The velocity deviation components are obtained by differentiating

the components of 6r._, with consideration being given to the fact that

the coordinate system is rotating with angular velocity f.

V
S

f= -_-=n O
(J-16)

6a ° • ÷

+sinf Ieo° (eo+ 6eo) cos 6_o)1

+ cos f (e o + 6e o) sin 6_bo_
(J-17)

6Vs -- v -_ _ -cos f -(e + 6eo ) cos 6_o

+sinf le o+ 5e o) sin 6_
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5v z = v 5i o cos (f- 6r_o) (J-19)

The position and velocity deviations may be written in matrix form

as shown in Eq. (J-20).

J. 4 Variation in Acceleration,

As in Appendix I, the variation in acceleration may be used to check

the solution of the variant problem. The matrix for 6a is obtained by

differentiating the lower half of (J-20). Equations (J-21) and (J-22) in-

dicate that the solution checks satisfactorily.

J. 5 Comparison with Differential Equation Solution of Appendix G

When the eccentricity is small, the differential equation solution

given by Eqs. (GI65)0 (G-66)0 and (G-67) reduces to the following:

5r= k 2 cos f+k 3 sinf+ k 4

5s = k I a o- 2 k 2 sinf+ 2 k 3 cos f-

5z = k 5 sin f+ k 6 cos f

(J-23)

_k4M , (J-24)

(J-25)

A comparison of Eqs. (J-23), (J-24), and (J-25) with the first three

equations of (J-20) indicates tha( the two sets are identical if

kl = 6_o - no 6too (J-26)

k 2. ao[eo-(eo+ 6e o) cos 6,o ] (J-27)

k 3 = - a o(e o+ 6e o) sin 69o (J-28)

_ k4 = 6a ° (J-29)

k5 = a ° 6iorCO s 5_O ' (J'30)
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k 6-- - a o 6i o sin 6_ o (J-31)

Thus, the differential equation solution is applicable to low-eccentricity

reference orbits as well as reference orbits of moderate eccentricity.

The distinction between the two types of reference orbits reduces simply

to a difference in the physical interpretation of the six constants of inte-

gration.
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APPENDIX K

MATRICES FOR ELLIPTICAL TRAJECTORIES

K. 1 Summary

For the case when the reference trajectory is an ellipse, analytic

expressions are developed for the elements of the matrices defined in

Appendix F. The eccentric anomaly E is the independent variable. The

reference trajectory flight path coordinate system is used.

K. 2 Selection of a Coordinate System

The matrices associated with the problem of small departures from

a known reference trajectory are defined in Appendix F. In Appendices G,

H, and I, the variational problem is solved analytically for the case when

the reference trajectory is an ellipse of moderate eccentricity.. The

solution is an expression for position variation and velocity variation in

terms of the variations in the orbital elements and the characteristics of

the reference trajectory. From this basic solution analytic expressions

can be derived for all the matrices of Appendix F.

The algebraic and trigonometric manipulations required are straight-

forward but quite formidable in length and in number. Therefore, the

Choice of coordinate system, of independent variable, and of a group of

six orbital elements should be carefully considered from the standpoint of

reducing as much as possible the amount of mathematical drudgery.

The reference trajectory coordinate systems have the obvious ad-

vantage of uncoupling the z-axis variant motion from the variant motion in the

reference trajectory plane. The consequence of this uncoupling is that

in each 3-by-3 matrix or sub-matrix of the group of matrices in Appendix

F, at least four: of the nine elements are zero.
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The problem now is to select one of the three reference trajectory

systems. Each of the three has an advantage not possessed by the other

two. The x y z system is non-rotating, and hence the matrix W in Appendix

F is the zero matrix. In the r s z system, boththe nominalposition vector
and the nominal acceleration vector lie in the r direction, so that there is

no component of either vector in the s direction. The p q z system has the

advantage that the nominal velocity vector is in the q direction; hence,
there is no component of v in the p direction.

The matrix formulations (I-ll), (I-12), and (I-13) may be used to

compare the three systems. The 4-by-4 matrix of the x y z system has no

zeros; the 4-by-4 matrix of the r s z system has two zeros, one due to the

fact that s -- 0 and the other due to the fact that a s 0; the pqz system's

4-by-4' matrix has two zeros, both due to the fact that v = 0. It is apparent
P

that both the r s z and p q z systems are preferable to the x y z system.

The final choice between the r s z system and the p q z system is a

difficult one. Actually, a considerable amount of analysis was done in each

of the two systems before it became apparent that the matrix formulations

are simpler in the p q z system. The relative simplicity of the p q z sys-

tem is associated with the fact that in this system the secular term in posi-

tion variation is wholly along the q-axis.

It might be argued that the r s z system has a similar property, in

that the secular term in velocity variation is wholly along the r-axis, and

• therefore, analysis in the r s z system ought to be just as simple as analysis

in the p q z system. This argument is not valid because one of the useful

formulations in guidance theory involves expressing the variant path in

terms of the three components of position variation at two different times,

as illustrated by Eqs. (F-2), (F-8), and (F-19), and no such formulation

in terms of the three components of velocity variation at two different

times is required.
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K. 3 Selection of an Independent Variable

The analysis is facilitated if all time-varying quantities are ex-

pressed in terms of one independent variable. Variables that might be

used include time itself and the three anomalies f, E, and M.

Inasmuch as t and M are linearly related, the choice of one or

the other of the two would appear to be equally desirable. Both have the

decided disadvantage that trigonometric functions of E and f can be ex-

pressed in terms of M (or t) only through Kepler's equation, (B-55),

which cannot be solved explicitly for E in terms of M.

On the other hand, the use of the true anomaly f as the independent

variable causes difficulty when the secular term in the solution of the

variant equations is expressed in terms of f.

By process of elimination, then, the eccentric anomaly is chosen

as the independent variable. Both trigonometric and secular terms can

be expressed directly in terms of E.

K. 4 Selection of a Grouping of Orbital Elements

The final selection problem is that of selecting a group of six in-

dependent constants which characterize the variant path. As in the

case of choosing a coordinate system and an independent variable, the

criterion in making the selection is to reduce the amount of algebra to

manageable proportions.

The six constants serve as a bridge linking position and velocity

variation at one time to position and velocity variation at another time.

First, a 6-by-6 matrix is obtained which relates position and velocity

variation at time t. to the six constants; then the 6-by-6 matrix is inverted
J

so that the six constants can be expressed in terms of the position and

velocity variations at time t i. Finally, the two 6-by-6 matrices, one in terms

of tj and the other in terms of t i, are multiplied together to yield a single

6-by-6 matrix by means of which position and velocity variations at tj

may be expressed in terms of position and velocity variations at t i. The
$

final matrix is the transition matrix C.. of Appendix F.
j1
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The six constants may be conveniently expressed in terms of

variations of §ome combination of the six orbital elements. The group-

ing that has finally been chosen, written in vector form,

6e =

(1- e2) 1/2 5_- n 5t
O

5e

(1 - e 2} 1/2

1 5a

2 a

e

(1 - e 2) 1/2 5i cos 5_

5i sin 6_

is the following:

(K-I)

K. 5 The Use of Position Variation and Velocity Variation to Describe

the Motion in the Reference Trajectory Plane

The first four elements of 5e are related to the motion in the

reference trajectory plane; the last two are related to the motion normal to

the reference trajectory plane. Since the two types of motion are un-

coupled, they can be studied independently. This section and the one

immediately following will be devoted to a study of the motion in the

reference trajectory plane.

If the elements in the vector on the right-hand side of (I-13} are

replaced by the first four elements of (K-I), the equation may be re-

1/2
written in the form shown in (K-2). When the factor 1/(1 - e 2 cos 2 E)

is considered as part of the 4-by-4 matrix of (K-2), the determinant of

the matrix is unity. Equation (K-3) is obtained by inverting (K-2). The

dashed lines in (K-2)and (K-3)indicate matrix partitioning.
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There is a striking similarity between the elements of the 4-by-4

matrix of (K-2) and the •elements of the 4-by-4 matrix of (K-3). The

similarity is made more apparent by partitioning the matrix of (K-2) into

four 2-by-2 matrices as follows:

5P
a

sq
a

na

bY
M

na

m

r $A 1

l"A 3

$

A 2

A 4

(1 -e2i_/Z 6¢,- n. _o

8e •

(1- e2) _/2

1 8a
aw

(K-4)

$

In terms of the four A matrices,

6e

(1 - e2) 1_2

1 8____a
2 a

e 8_

I

Eq. (K-3) becomes

* T * Ti
A 4 -A 2

*T
* T A1-A 3

a

8q

a

na

na

(K-5)

137



The terms of the 4-by-4 matrix of (K-5), which is the inverse of

the 4-by-4 matrix of (K-4), can obviously be obtained from the matrix of

(K-_) by inspection. This relationship between (K-4) and (K-5) is not

true in general for any arbitrary selection of orbital element variations;

in fact, the grouping of the elements that is being.used has been chosen

primarily because it validates the simple relation between (K-4) and

(K-5).
$

When the subscript j is added to each of theA matrices in (H-4)

in order to indicate that the matrices are evaluated at time tj, the

equation gives the position and velocity variations corresponding to

t = tj. Similarly, adding the subscript i to the _T matrices of (K-5)

signifies that the variations in the orbital elements are being expressed

in'terms of position and velocity variations at t = t I. If the two resulting

equations are combined, the variations in the elements may be eliminated

and the position and velocity variations at t = tj are related to the position

and velocity variations at t = t i.

6Pj 5P i

oq.

OV
Ibr_

; Z

Alj A2j

nA3j nA4j

* T 1 * T
A4i - _ A2i

* T 1" T
"A3i H All

6q i

OV_

ov . OV

(K-6)
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5 pj 5p i

5 qJl

6v

Pj]
I

I

5 Vqj j

9

* * T * * T

AIj A4i -A2j A3i

* * T * * T

n (A3j A4i -A4j A3i )

+ A2j Ali T) 6q i

6v
Pi

6v
qi

(K-7)

5Pi

* v * v

Mji Nji 5q i

* v * v
S.. T.. 5v

J1 J1 Pi

5v
qi

(K-a)

The primed matrices of (Kr8) are the two-dimensional versions

of the corresponding matrices defined in Appendix F. It is apparent

from (K-7) and (K-8) that

* ' * ')T
Mji = (Tij

* ' * ')T
Nji = (-Nij

* ' * ')T
Sji = (- Sij

* ' * ' T

Tji = (Mij)

(K-9)

(K-10)

(K-If)

(K-12)

139



f

o _l _! D

f

i

i

i

4-

0

r_"_

4+

I

o

I

_ I _I_

°I°
k,...

f

el° _lo
t,.

-y

ii

.A.

h

_)

ul
0

i

i

4-

r_,-, ._1''>

_ ¢,,1_1

@

+

_i _ _

I +

I

+

0

)

h

i

14()



These two-dimensional matrix equations are in agreement with the cor-

responding three-dimensional matrix equations of Section F. 7.

K. 6 The Use of Two Position Variations to Describe the Motion in the

Reference Trajectory Plane

Another way of expressing the variations in the orbital elements is

in terms of the position variations at two different times, t i and tj. This

is accomplished by inverting Eq. {K-13). The expression for the inverse

is simplified to some extent by the introduction of two new angles,

Ep ("E plus"} and E M ("E minus"}.

1

Ep = _ (Ej + E i) (K-14)

1
EM =-2 (Ej -E i)

(K-15)

The determinant of the 4-by-4 matrix of (K-13) is

(det)pq = - 4 X sin E M (K-16)

where X = (3 E M - e sin E M cos Ep)(COS E M + e cos Ep) - 4 sin E M

(K-17)

The inverse equation is (K-18).

(K-13) and (K-18) illustrate the reason previously mentioned for

selecting the p q z coordinate system. Only two of the sixteen elements

in the matrix of (K-13) contain the secular term; if the r s z system were

used, there would be four elements with secular terms. Eight elements

in the (K-18) matrix have secular terms; with the rs z system there would

be twelve elements with secular terms.

1 5a is unaffected by the secular term.Note that the element _ -_-

The factor 1/2 X is common to all the elements in the (K-18) matrix.

Since X is a time-varying quantity that goes through zero, there are com-

binations of E. and E. for which the matrix of (K-13) become singular;
i 3

for these combinations (K-18) cannot be evaluated.
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The remarks about X are also applicable to sin E M. Whenever

sin E M equals zero, the (K-13} matrix is singular. The significance of

the singularities is discussed in Appendix O.

K. 7 Motion Normal to the Reference Trajectory Plane

The position and velocity variations along the z-axis are

{tf ii{ t5z y -x 5i cos 5_

6vz Vy -vx 5i sin 5_

(K-19)

r"

i

i

i6Vz

sin E -(cos E - e)

cos E

1 - e cos E

sin E
1 - e cos E

(l-e2) '" 5icos 5n

5i sin 5_

(K-20)

The determinant of the 2-by-2 matrix of (K-20} is equal to one.

The inverse of (K-20) is

(1 - e2) 1/2 5i cos 6_

=c

6i sin 5_,

sin E
cos E - e

1- e cos E

- cos E

1- e cos E
sin E

6z

a

6v
Z

na

(K-21)
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By combining (K-20) and (K-21),
terms of 5z. and 6v

1 Z."
1

_j and 6Vz. are expressed in
3

6zj sin Ej -(cos Ej - e)1

n cos Ej n sin E_ l5Vzj ---
1- e cosEj 1- e cos Ej

sin E.
1

1-e cosE.
1

cos E.
1

l-e cos E.
1

1__ (cos E i - e
n

1 sin E.
n 1

f Szi 1

5VziJ

(K-22)

2 sin 2E M 2 sinE M{cos E M - e cosEp)
1

1 - e cos E i n

-2nsinE Mcos E M

(1 - e cos Ei)(1 - e cos Ej)

2 sin 2 E M
1-

1- e cos E.
J

6z i

6Vz i

(K-23)

Note that when sin E M = 0, i.e., when (E.- E i) is an integer• j

multiple of 360 °, 5z'j = 6z i and 6Vz. = 5Vz. , irrespective of the nature
j 1

of the variations in the orbital elements.

The variations in the elements may be expressed in terms of 5z.
1

and 6zj by inverting Eq. (K-24)o

sinE i -(cosE i-e) (l-e2) 1/2 5i cos 5_

sin Ej - (cos Ej - e) 6i sin 5_

(K-24)
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The determinant of the 2-by-2 matrix is

(det)z = sin (Ej -E i) - e (sin Ej - sin E i) (K-25)

--2 sinE M (cos E M - e cos Ep) (K-26)

The inverted equation is

(l-e2) 1/2 5i cos 5
6z i

-(cos Ej-e) cosE i-e T

1

.6isin b_ - sin E_.3 sin E i a

(K-27)

The condition for singularity of the matrix of (K-24) is most

easily interpreted when (det)z is expressed in terms of the difference in

true anomalies, (fj - fi")

r° r°

(det)z - 2 i e2._) / 2 sin (fj - fi) (K-28)
a (i-

The matrix becomes singular when

fj fi -- N _r (K-29)

where N is any integer.
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$

K t 8 The Transition Matrix Cji

The results of Section K. 5 and K. 7 can be combined to give

analytic expressions for the matrices defined in Appendix F. In this

sectl0n, such _xpressions are developed for the elements of the tran-

sition matrix Cji _ • •

The 3-by-6 matrices Fj and Lj satisfy the equation

p_,

%

6=j

6V_

_-I.g

_-- (

Fj

$

Lj

(1-e 2) 1/2 6@ - n 6to

5e

(1 - e 2)1/2

1 6a
"_ a

e 6¢

(I-e2)I/2a cos

61 sin 6G

(K-30)

The elements of _j and _j are given in Eqs. (K-31) and (K-32).

146



A

i

A

A

A

W
i

i

X

i

u _.i_

÷ '_
,-4

i ÷

i

I

i

I I

I I

Q _ O

I +" I

I_E_J i_

_o I I

J

A

i

_W

B _i_

_ _i_ _i_

_ _i_ ,

__

i l

.-.7_

%

i
1

i

I

I

I

J
Y

)47



03
!

C_

8
m

!

m

_" 3
._ •

v

Ea

! m

b.1

m t-q

| c3

A b3

v 4-

I
If'------

I _

I

!

cn
0 0 0
CJ

2 I
° Ii

' I
I
I

°-_ I
0 o,1 O

0

!

1,2

0

!

I

IIr,i

148



t

c, o o o

i

r_

t ,

o
(J

4-

4-
i i

o o

0 c:

v

i

o

4-

(J

i

o o

c_ 0

11

J

149



The inverse of Eq.

R i and V i.

(K-30) establishes the 6-by-3 matrices

6e =

(1-e2) 1/2 6} - n 6t
0

1 5a

2 a

e_

(1- e2)1/2

6i sin 5_

6i cos 5_

= i Ri Vi

8Pi

6qi

6z i

v_

t_v
%4.*

bV_

(K-33)

The elements of R and V i are given in Eqs.

The transition matrix Cji is obtained from Fj,

Mji _ji
*

sji TjiJ

• R i

. Li]

(K-34)$ and (K-35).

Lj, R i, and V i.

*

Cji =

_j_. Fj i

LjRi j i

(K-36)

(K-37)

(K-38)
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The matrix multiplications indicated in (K-38) have been performed.

The four resulting 3-by-3 sub-matrices, Mji, Nji, Sji and Tji, are pre-

sented in Eqs. (K-39), (K-40), (K-41), and (K-42). Taken together, these

four sub-matrices constitute the desired solution for Cii.
J

It is interesting to note that only nine of the sixteen non-zero
.

in-plane elements of 12.. have secular terms. There is no secular term In
:il

the expression for 5 Pi'. The coefficient of 5 Vpi contains no secular
term.

K. 9 Matrices Associated with Position Variations at Two Different

Hij' Hji' Jij' and Kij.

Times

The matrices of Appendix F that are used in conjunction with a

path deviation vector composed of two position variation vectors are

The first two are defined by the following equation:

(1 - e 2) 1/2

6e

(1 - e 2) 1/2

1 5a

2 a

e 5_

(I-e2) 1/2

5i sin

6_-n 8t
O

5i cos 5_

8_

5P i

I
I

5q i

I

6z i i_
I

• !

I

6pj ,
I

5qj [

.6zj J

(K-43)
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Both Hij and _i are 6-by-3 matrices. The, elements" of Hij are shown in

Eq. (K-44). Hji may be obtained from Hij by a simple interchange of all

subscripts i and j_ •

Matrices Jij and Kij relate -_i to 6r i and 5rj.

6v i = L i (Hij 5_ri + Hji %) (K'45)

= Jij 6ri+ Kij 6rj (K-46)

The matrix products indicated by (K-45) and (K-46) have been obtained

and are recorded as Eqs. (K-47) and (K-48).

The factor X appears in the denominator of each of the in-plane

elements of all four matrices, Hij, Hji, Jij' and Kij. The factor (det) z

appears in the denominator of all out-of-plane elements. Also, there

are elements containing the term 3 EMJsin E M. Therefpre, the matrices

are not applicable when X,_ or (det)$ or sin E M is equal to zero.

The elements of Kij in Eq. (K-48) may be compared with those of

Nji in Eq. _,(K-40)" Let krs be the element in the r-th row and the s-th

column of Kij.

kll k12

Kij = k21 k22

0 0 k33

(K-49)
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Matrix Nji can be expressed in terms of the elements of Kij.

4 X sin E M k22 k12 0

n 2 ' 0
k21 -kll

1

o o

(K- 50)

fore,

Equation (F-34) indicates that Kij is the inverse of Nji.J
There-

Kij Nji =
(K- 51)

The off-diagonal elements of Kij Nji are easily verified as being zero

from (K-49) and (K-50). It is also obvious that the element in the third

row and the third column is unity. The equation for either of the other

two diagonal elements yields a simple relationship between the k's and

the factor X.

4 X sin E M

2
n

(-kll k22 + k12 k21) = 1 (K-52)

kli k22 - k12 k21 = _

2
n

(K-53)
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The combination_ (kll k22 - k12 k21) is the determinant of the 2-by-2

sub-matrix of Kij which relates to motion in the plane of the reference

trajectory. The determinant of the sub-matrix is equal to

2
n

Then the determinant of the 2-by-2 sub-matrix of N.. is
P

4 X sin E M

•

n

The quantity - 4 X sin E M has been encountered once before, in Eq. (K-16),

where it was indicated as the determinant of the 4-by-4 matrix of Eq. (K-13).

K. 10 • Checks of the Matrix Elements

Some of the equations developed in Appendix F for the n-body

problem may be used as a check of the validity of the matrix formulations

of Sections K. 8 and K. 9. In particular, Eqs. (F- 75} through (F- 79} may be

checked by inspection.

A simple cross-check of Nji and Kij was made in the last section.

The author has verified Eq. (K-53} by actually performing the indicated

multiplication of matrix elements. Equation (F-33} has been used to

•  ij' *check the elements of Mji , and Jij"

Additional checks are obtainable from the matrix differential

equations of Section F. 5. These include Eqs. (F-51} through (F-54}0

{F-57} and (F-58}, {F-63} and (F-64}, and {F-69} through (F-72}. The

matrices _ and W are needed for these checks.
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2
n

G-

From Eqs. (E-19), (B-81),

(1 - e cos E) 3

3

1-e2cos 2 E

and (B-82),

/ 1 - e 2 (1 - e 2) 1/2e sin E 0 \

(1 - e2)l/2e sin E e2sin2E 0

\ 0 0 0

i

-I 3

(K-54)

The angular velocity of the p q z coordinate system is _u z. From

Eqs. (B-80)' and (F-44), the W matrix is given by

nle2 l010/•W = 1 0 0 (K-55)
(l+e cos E)(1 - e cos E) 2

0' 0 0

The differential equation checks have not actually been carried out

analytically, although spot checks have been made for some of the elements

in Eqs.'(F-63) and (F-64). In general, the equations serve as a ',back-up"

in case any element of any matrix is open to question.
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APPENDIX L

FIXED-TIME-OF-ARRIVAL GUIDANCE

L. 1 Summary

When the destination point is fixed in space and time, the

required velocity correction may be expressed in terms of the

predicted position variation at the destination by means of the

simple matrix equation

CF = - KCD6r-D (L-l)

where c F is the velocity correction vector for fixed-time-of-

arrival guidance. 6r_D- is the position variation vector at the des-
.

tination which would exist if no correction were applied. KCD is

a 3-by-3 matrix which can be evaluated numerically for the many-

body problemand can be determined analytically for the two-body

problem.

L. 2 The Velocity Correction

The basic assumption in the guidance theory to be developed

is that all variations from the known reference trajectory are

small. This assumption holds both before and after the application

of a velocity correction. Consequently, the correction itself must

be a small quantity.

The velocity correction is assumed to be the result of a

thrust impulse. At the time of the correction, the thrust impulse

causes an impulse in vehicle acceleration, which in turn produces

a step change in vehicle velocity. The correction causes no

instantaneous change in vehicle position.
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The subscript C appended to a time-varying quantity signifies
the value of the quantity corresponding to the time of application o{

the correction. The superscripts - and + are used, respectively, to

indicate conditions existing before and after.the correction.

The position and velocity variations at the instant after the

correction c are related to the variations immediately before the
correction as follows:

(L-2)

(L-3)

These two relations may be combined into a single equation by use
of the six-dimensional vector 5x.

m

5x = = +

C+ 6ZC+ J 6Xc-

(L-4)

From Eq. (L-3) the velocity correction is given by

_c= 6v C - 5v C (L-5)

The six quantities constituting 6X_c completely define the

variant path of the vehicle in the gravitational field. From Eq. (L-4)

it is apparent that only three of the six can be altered by the cor-

rection c; hence, only three mathematical conditions can be satisfied

by the correction. Many different guidance schemes may be formu-

lated by the simple expedient of _arying:_he conditions to be satisfied

by c.
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L. 3 The Velocit_r Correction for FTA Guidance

For some types of missions, the goal is to have the vehicle

arrive at a fixed point (the destination) in heliocentric space at a

fixed time. This type is known as a fixed-time-of-arrival (FTA)

mission.

The three mathematical conditions to be met in an FTA

mission are obviously those involved in reducing to zero the three

components of position variation at the destination. In mathematical

language, it is desired that

6rD + .- 0 3 ' (L-6)

where the subscript D refers to conditions at the time of arrival at

the destination.

The problem now is to determine c F such that Eq. (L-6)

is satisfied. Equation (F-29) is used to get expressions for 6v C
+

and 6v C , from which c F may be obtained by use of (L-5).

6Vc" - JCD 6-_Z- + KCD 6--rD- (L-T)

6Vc + * -C + *JCD 6r + KCD 5rD + (L-8)

-- JCD 6rc (L-9)

c F- 6Vc +-6vC- - _ KCD6r D" (L-IO)

It is interesting to note that, although six quantities are needed

to specify completely the vehicle's variant path, only three quantities

are required to determine the velocity correction vector in FTA

guidance. This fact can effect an appreciable saving in computation.
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A simple logical argument can be made for the validity of

Eq. (L-10) without recourse to mathematics. Since the objective of

the guidance system is to reduce 6r_D to zero, it is obvious that

c F must be zero if 6r D is zero, and c F must be non-zero If 6_r D
m

is non-zero. Therefore, the correction depends on 6r D and Is

not affected by any characteristics of the variant path that are

independent of 6r_D .

The velocity correction does not, and indeed it cannot,

cause the vehicle to return instantaneously to the reference tra-

jectory, inasmuch as such a procedure would require that six,

than three, conditions be met (i. e., 6rc + = 0, 6Vc +rather 0).

What the correction does accomplish is to set the vehicle on a new

variant path which intersects the original variant path at t = t C

and intersects the reference path at t = t D. This concept is

illustrated in Fig. L. 1.

L. 4 Velocity Variation at the Destination

The impulsive thrust correction which nullifies the position

variation at the destination does not have the same effect on the

velocity variation. From Eq. (F-29), after the correct'ion is

applied, the residual velocity variation at the destination is

6VD + = JDC 6--rD + + KDC 6--rC (L-II)

Equations (L-2) and (L-6) are substituted into (L-11).

6VD + = KDC 6r C- (L-12)

Thus, for a path deviation vector composed of 6r C and

6rD', 6V_D + depends only on that part of the path deviation vector

contained in6r C , while c F depends only on that part contained in

6rD-.
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c
C I

/

LCD =

LC' =

_C'D' =

C'D =

6rc-=

6_rD- =

CF,=

D r D

attractive focus (sun)

launch point

F

L

point on reference path corresponding to time of correction t C

point on actual path corresponding to time of correction t C

destination point

predicted position of vehicle at nominal time of arrival at

destination if no correction is applied

reference path

actual path from launch to time of correction

predicted actual path if no correction is applied

corrected path

6rc+ -- position variation at time of correction

predicted position variation at target if no correction is

applied

velocity correction vector

(_vc + 6vc) - (_vc , 6__c-)_ 6Vc+ - 6vc-

Figure L. 1 Fixed-Time-of-Arrival Guidance

167



Since the most practical method of expressing the character-

istics of the origina] variant path is in terms of the components of

6x D , it is desirable to express 5VD + "- _ m terms of 6r_D and 6VD-,

rather than 5rc- . Such an expression is readily obtained from the

difference (SVD+ - 5VD-).

6VD + - 6VD- = }DC (SrD + - 6rD-) + KDC (Src + - 5rc-)

= - JDC 5rD- (L-13)

5VD + = - JDC 5rD- + 5VD= {-JDc 13} 5XD- (L-14)

Equations (L-6) and (L-14) may be combined into a single

equation relating 5x D to 6x D .

÷
5x D = -_

O 3

5x D-#

_.-JDc I J

(L-15)

L. 5 Change in the Orbital Elements
f

When the reference trajectory is an ellipse, it may be of

interest to determine the change in the orbital elements caused by

the correction c F. From Eqs. (F-l) and (F-2), the original path

deviation vector 5e- may be written as

6e-= { R D V D } 6x D (L-16)

HDC _rD-

(L-17)
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After the corrective thrust is applied, the path deviation vector

becomes

5e + : { HCD HDC

= HCD 5r C- (L-18)

The change in the variations of the orbital elements is

6e + - 6e = - HDC 6r D (L-19)

Like CF, (Se + - 6e-) depends on 5r D and no Other para-

meters of the original variant trajectory. The close relationship

between c F and (6e_ + - 6e-) is clearly shown by means of Eq. (F-17).

c F : 6Vc+ - 6v c- = L c (6e + - 6e-) (L-20)

Equations (L-10) and (L-19) can be combined to obtain a

relationship that is the inverse of (L-20). Equation (F-34) is used

to simplify the result.

+
6e - 6e

* * -i * *
- = HDC KCD CF = HDC NDCCF (L-21)

169



L. 6 Method of Numerical Evaluation :'

Once 5r D has been determined, the correction c F corresponding

to any given t C can be computed as soon as the elements of KCD have

been evaluated.

For the many-body problem the elements of KCD are computed

by numerical integration, as shown in Section F. 6° In accordance with

the suggestion made in that section, the equations to be integrated are

simplified by using a non-rotating coordinate system, and the round-off

error is reduced by choosing the z-axis to be perpendicular to the plane

of the basic motion {i. e., the motion that would exist in the absence of

disturbing forces).

From {F-53) and {F-54}, the matrix differential equations are

a NCD

a t C
- TCD (L-22)

#

a TCD

a t C
- G C NCD (L-23)

These equations are integrated in the negative time direction, starting

from t C = t D. For a given reference trajectory, t D is a fixed quantity,

and the selected time for applying the correction lies in the range t I to

t D, where t I is the time of injection. The initial conditions are

NDD = 0 3 TDD = 13 (L-24)

For the non-rotating coordinate system, the elements of G C are

known as a function of t c from Eq. (E-11). The matrix combination

inside the braces on the right side of (E-11), when evaluated at t = t C,

constitutes G C.
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The two matrix equations (L-22) and (L-23) consist of eighteen

coupled first-order differential equations in the eighteen variables

composed of the elements of NCD and TCD. The numerical integration
yields these elements as a function of t,_.

g¢ #

KDC and KCD are obtained from I_CD by simple matrix mani-

pulation.

From (F-34),

* * -1 (L-25)
KDC = NCD

From (F-79),

* * T CD T) -1KCD = - KDC = - (_ (L-26)

If the reference trajectory is an ellipse, there is no need for

the numerical integration. An analytic solution for the elements of

KCD, in the flight path coordinate system, may be obtained by the

proper substitution of subscripts in Eqs. (K-14), (K-t5), and (K-48).

The mechanization of the guidance system does not require a
+

knowledge of 5v D . However, such knowledge is of value if more

than one midcourse correction is to be applied.

The additional information needed to compute 5VD + includes the

components of 5v D and the elements of JDC" 5VD-, like 6r D , is

based on the observations made during the course of the flight. The

determination •of JDC involves a procedure similar to the one described

for evaluating KCD.

For the many-body solution, eighteen additional coupled first-

order differential equations are integrated numerically in the negative

time direction, starting from t = t D. The eighteen are contained in two
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matrix differential equations derived from (F-51) and {F-52).

#

a MCD ,

a t C - SCD
(L-27)

a SCD

a t C
- G C MCD (L-28)

The initial conditions are

MDD = 13 SDD = 0 3 (L-29)

# #

The solutions contains the elements$ of M CD and SCD as a function of t C.

JDC is obtained from KCD and MCD by the use of Eq. (F-33).

$ $ $ * T *
JDC = - KDC MCD = KCD MCD (L-30)

#

A check on the compuations is afforded by the fact that JDC is a

symmetric matrix.
$

For an elliptical reference trajectory, the analytic form of JDC'

in the flight path coordinate system, comes directly from Eqs. (K-14),

(K-15), and (K-47).

Numerical evaluation of the elements of 6e, either before or

after the correction, is not necessary for the mechanization of the

guidance system. If for some reason the numerical values are desired,

the matrices R D and _D are required to determine 5e- from Eq. (L-17)I
$

and HCD is needed to determine 5e + from Eq. (L-18). Analytical ex-

pressions for R D, V D, and HCD may be obtained from Eqs. (K-34),

(K-35), and (K-44), respectively.
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APPENDIX M

VARIABLE - TIME -OF-ARRIVAL GUIDANCE

M. 1 Summary

When the nature of the space mission is such that the time of

arrival at the destination need not be rigidly constrained, the velocity

correction may be expressed in terms of only two components of the

predicted position variation at the nominal time of:arrival. The

correction can be computed in s_ch a way that, for the particular

time of correction selected, the magnitude of the correction is mini-

mized. This method of computation is known as variable-time-of-

arrival (VTA) guidance.

Equations are developed for the velocity correction in VTA

guidance and also for the change in the time of arrival.

M. 2 Design Philosophy of VTA Guidance

The concept of VTA guidance is clarified by the introduction

of two new vectors, the relative velocity vector v R and the miss

distance vector 5p.

v R is the relative velocity of the space vehicle, on its refer-

ence trajectory, with respect to the destination planet at the nominal

time of arrival at the destination. In mathematical terms,

v R = v S - Vp

where v S is the velocity of the space vehicle on its reference tra-

jectory at the nominal time of arrival and Vp is the velocity of the

(M-l)
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destination planet at that time. Fig. M. 1 gives a schematic represen-

tation of v R.

5p_is defined as the component of 5r D, the position variation

vector at the destination, that is perpendicular to v R. It represents
the minimum distance between vehicle and destination point.

The objective of VTA guidance is to reduce 5p to zero. Since

5p_lies in the plane perpendicular to v R, accomplishing this objective
accounts for only two of the three conditions that can be satisfied by

the velocity correction. A third condition must be specified before the

correction can be determined uniquely.

Although there are several practical possibilities for the third

condition, as indicated in References (9) and (10), the only one con-

sidered in this analysis is the minimization of the magnitude of the

midcourse velocity correction.

M. 3 Basic Guidance Equations for VTA Guidance

The change in the time of arrival due to VTA guidance is

designated At D. The variation At D, unlike the variational quantities

previously d_scussed, is deliberately inserted into the system; the use

of the symbol A rather than 5 is intended to emphasize this distinc-

tion. The actual time of arrival at the destination in VTA guidance is

t D + At D.

Prior to the application of the correction, the predicted velocity

of the vehicle relative to the destination planet at t = t D is v R + 5VD-.

After the correction is applied, the relative velocity at t = t D is

v R + 5VD +.
+

With both At D and 5v D recognized as small variational
+ .

quantities, linear theory gives the following relationship for 5r D in

VTA guidance:

÷

5r D = _ (V_R +SVD +) At D

= - v R At D (M-2)
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TRAJECTORY OF DESTINATION PLANET

D I

---q_--_ACTUAL TRAJECTORY OF

SPACE VEHICLE

REFERENCE TRAJECTORY OF SPACE VEHICLE

D

_vR

Vp

F

F = attractive focus (sun)

D = destination point on reference trajectory

D' = predicted position of vehicle at nominal time of arrival at

destination (t = tD)

6_rD- = predicted position variation at t = tD

6_.vD- = predicted velocity variation at t = tD

v S = velocity of space vehicle on reference trajectory at t = tD

Vp = velocity of destination planet at t = tD

v R = relative velocity of space vehicle with respect to destination

planet at t = tD

- v S - Vp

Figure M.1 Relative Velocity Vector

175



In Fig. M. 2, the VTA correction moves the predicted vehicle

position at t = t D from D' to H. The distance of H from D, the position
+

of the destination planet at t = t D, is the magnitude of 5r D . Note

that 5rD +" is not, in general, equal in magnitude to the component of

6r D in the v R direction.

Figure M. 2 illustrates the basic difference between the FTA

and VTA systems. The correction in FTA guidance is made such that

the vehicle passes through the specific point D at t = t D, while the

correction in the general concept of VTA guidance requires only that

at t = t D the vehicle be situated on the line through D parallel to v R.

Let c V denote the velocity correction in VTA guidance.

c v = 6v c - 6v C

-_ _,_ _ _

= (JcD 6rc + + KCD 5--rD +)- (JcD 5rc- + KCD 6rD )

= KCD (SrD + - 6rD-) (M-3)

= c F -w At D (M-4)

where

w = KCD v R (M-5)

Equations (M-3), (M-4), and (M-5) are the basic equations of

VTA guidance, independent of the third condition to be satisfied by the

correction vector c V. Specifying a third condition is analogous to

specifying AtD; when this is done, c V is determined uniquely.
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D !

8 r D 8p-

V R D

H

6p =

v R

nominal destination point

predicted position of vehicle at t = t D

applied

predicted position of vehicle at t = t D

is applied at t = t C

if no correction is

if VTA correction

predicted position variation vector at t = t D if no cor-

rection is applied

miss distance vector

= component of 6 r_D- perpendicular to Vl_

= nominal velocity vector of vehicle relative to destination

point art = t D

= predicted position variation vector at t = t D if VTA cor-

rection is applied at t = t C

Figure M.2 Miss Distance Vector and VTA Guidance
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M. 4 Variation in Time of Arrival

The variation in time of arrival is to be determined such that it

satisfies the condition that the magnitude of c V be a minimum.

From Eq. (M-4),

T (AtD}22 T T T _t D + w w (M-6)c v =c v c v =c F c F- 2w c F

The partial derivative of Cv2 with respect to At D is equated to zero.

The vectors c F and w are both independent of At D.

a (Cv2) T T

a (_t D} = 0 = - 2w c F + 2 w w _t D
(M-7)

The solution of this equation for A tD is

T
w c F

AtD - wT w
(M-8)

M. 5 Velocity Correction in VTA Guidance

Equation (M-8)may be substituted into Equation (M-4).

W W W W

c v = _c_ - c = c
T -- T --F

W W W W

(M-9)

, w T ),= - I3 wT w KCD 5rD-
(M-10)
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Equation (M-9) shows the mathematical relationship between

VTA and FTA velocity corrections. It was developed in this form by

Battin (4)

An interesting result is obtained from the scalar product of c V

with w.

w Wi_wT
wT w CF=0

(i-ll)

• Since neither the vector c V nor the vector w is in general a zero

vector, it is apparent that c V is always perpendicular to w. Thus, c V

is constrained to lie in the plane perpendicular to w. Noton {9) refers

to {he direction of w as the "noncritical direction" and the plane normal

to w as the "critical plane".

The vector w depends on KCD, which is a function of both t C

and t D. For a specified reference trajectory, t D is fixed, but t C

can vary. Consequently, the noncritical direction and the orientation

of the critical plane both depend on the time at which the correction is

to be made.

From (M-4), c F is the vector sum of c v and w At D. Since

A tD is a scalar, the vector w A tD is parallel to w__. The other term in the

vector sum, namely c V, is perpendicular to w__. Thus, the vector

triangle, shown in Fig. M. 3, is a right triangle whose hypotenuse is c F,

and c V is simply the component of c F in the critical plane.

M. 6 Position Variation and Velocity Variation at the Destination

The position variation 5rD+ can be expressed as a function of

by combining Eqs, (M-2), (M-8), and (L-I).

5rD + = _ v R At D

T
, vR w

T
W W

c F (M-12)

T
ZR w .,,

w T w KCD 6rD-
(M-13)
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w At o

C V

c F _- FTA velocity correction vector

c V -- VTA velocity correction vector

w -- _CD VR = vector in noncritical direction

_CD -- 3-by-3 matrix depending on t C and t D

v R _- relative velocity vector

_t D -_ change in time of arrival at destination

Figure M.3 Vector Relation between Velocity Corrections in

FTA and VTA Guidance
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The velocity deviation 6V_D is

÷ *

5VD = JDC 5rD + + KDC 5rc + (M-14)

From Eqs. (L-2), (L-12), and (L-14),

$ _ - # ¢-

KDC 5rc + = KDC 5rc--{-JDc I3} 5XD-
(M:15)

5VD + is the result of combining (M-13),The final expression for

and (M-15}.

= - -- KC 5r D- + 6v D-
5VD + - JDC 3 w_ w -- --

(M-14),

(M-16)

A composite equation can now be written in which 6x D is

expressed in terms of 5x D .

I T

VRW •

w KCD

+

, , v R w

"JDc 3" "_ w

O 3

K C 13

(M-17)

This equation can be compared with Eq. (L-15), the corresponding

expression for FTA guidance.
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M. 7 Change in the Orbital Elements

The six-component vector 5e-, expressing the Variations in the

orbital elements:before application of corrective thrust, is obviously

unaffected by the type of correction that is contemplated. It can be

expressed in terms of 5x D- or in terms of 5r C and 5rD-, as indicated

in Eqs. (L-16) and (L-17}.

After the correction, the new vector 5e + for VTA must differ from
÷

the 6e for FTA, since different corrections are applied. For VTA,

÷ # #

5e = { HCD HDC }

6rc +

5rD +

T

HCD HDC T KCD
W W

(M-18)

The change in 5e due to the VTA correction is obtained by subtracting

(L-17) from (M-18).

T

- * ($ VRW--- $ ) -5e +- 6e = - HDC I3- T KCD 5rD
W W

(M-19)
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The analogous equations to (L-20) and (L-21) are valid for VTA.

c v = L C (5e+ - 5e-) (M-20)

* :_ -1 Cv Cv (M-21)5e_+ - 5e- = HDC KCD = HDC NDC

M. 8 Numerical Evaluation

The number of quantities to be evaluatedfor VTA guidance is

obviously greater than the number in FT_A guidance. Foremost is the
+

correction c V. Second in importance is 5x D , which now includes a

non-zero 5rD+. Third is the change in arrival time, At D. Finally,

for elliptical trajectories, there is the capability, though not the

necessity, of computing 5e - and 5e+_

The matrices required for the first three are KCD and JDC'

the evaluation of which has been described in Section L. 6. The new

quantities involved are the vectors v R and w. The former is obtained

directly from the reference trajectory, and the latter comes from

the ma, rix product of Eq. (M-5). The matrices R D, V D, and HCD,

needed to evaluate 5e- and (Se + - 5e -) are obtained from AppendiX K.

It is quite obvious that VTA guidance entails somewhat more

computation than FTA guidance. The added steps, however, are simple

ones; they consist primarily of multiplications and additions of

3-by-3 matrices; there are no new matrix inversions, and the additional
T

divisions all involve the same scalar quantity, w w.
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APPENDIX N

OPTIMIZATION OF TIME OF CORRECTION

N. 1 Summary

A new rotating coordinate system, called the critical-plane coordinate

system, is introduced, in which the VTA velocity correction is expressed

as a two-dimensional vector and the miss distance is also expressed as a

two-dimensional vector. Then the matrix relating the correction vector

to the miss distance vector is reduced to a 2-by-2 matrix. For elliptical

reference trajectories, one of the four elements of this matrix is equal

to zero.

If the two-dimensional miss distance vector is represented by a mag-

nitude and a phase angle, the magnitude of the correction vector is a

linear function of the magnitude of the miss distance vector but varies

in a non-linear fashion with the phase angle of the miss distance vector.

A technique is developed for determining the time of correction as a

function of the phase angle such that the magnitude of the VTA correction

is minimized.

N. 2 Introduction

Appendix M develops the method of computing the VTA velocity cor-

rection corresponding to a given time tC, but no consideration has yet

been given to the means of specifying tC. Since the magnitude of the cor-

rection c V varies with tC, it is desirable to specify that particular tC for

which the magnitude of c V is minimized. The minimization procedure is

facilitated by the introduction of the critical-plane coordinate system.

N.3 Critical-Plane Coordinate System

The axes of the critical-plane coordinate system are designated

_C" _]C' and _C" The _C - _]C plane is the critical plane corresponding

to the given tC. The _c-aXis is in the noncritical direction; i.e., it is

parallel to w. From Eq. (M-5),

_w = KCD v R (N- I)
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Since KCD varies with t C, the critical-plane coordinate system is a

rotating system. Its origin, like that of the three reference trajectory

systems of Appendix A, is at the center of the sun. The _C-axis lies

along the line of nodes between the critical plane and the reference

trajectory plane.

In the analysis of Appendix M, it may be assumed that one of the

three reference trajectory coordinate systems described in Appendix A

is used. Let r 1, r 2, r 3 indicate the three axes of the particular system

being used. Then Euler angles _C and i C serve to orient the critical-

plane coordinate system with respect to the r 1, r 2, r 3 system. _C is

the angle measured in the reference trajectory plane from the positive

rl-axis to the positive _C-axis. i C is the angle between the positive r 3-

axis (i.e., the z-axis) and the positive _C-axis.

The positive _C-axis is in the direction of w. The positive _c-axis

is chosen as that half of the line of nodes for which _C lies between 0 °

and 180°" (_C is positive in the direction of vehicle motion.) The positive

_C-axis is such that _C" _C' _C form a right-handed orthogonal triad.

It may be noted that i C, as well as _C" lies in the range 0° to 180 °.

N.4 Critical-Plane System Coordinate Axes at Nominal Time of Arrival

The orientation of the critical-plane system coordinate axes depends

on w, which depends on KCD. For all values of t C for which the elements

of _CD can be determined, the axes are defined uniquely. However, if

the elements of KCD cannot be determined, some other means must be

used for specifying the axis directions. Such a problem arises when

t C =. t D.

KCD is computed from the equation

• IKCD = - NCD (N-Z)

and NCD is obtained by integration of eighteen coupled first-order dif-

ferential equations. At t C = t D the matrix NDD is the zero matrix; hence

it has no finite inverse, and _DD cannot be determined.
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A physical, rather than purely mathematical, approach can be used

effectively to attack this problem. If the vehicle's position at t D is along

the line through the nominal destination point and parallel to _vR, the ob-

jective of the VTA guidance system has been attained, and no further cor-

rection is desired. Thus, the non-critical _D-axis is in the direction of

v R, and the critical plane {i.e., the _D - _D plane) is perpendicular to

v R.

For the case of elliptical reference trajectories, a mathematical ex-

planation is possible. Let t C be very close to t D, so that E M, which is

equal to half the difference between E D and E C, is a small angle. For

small values of E M,

sine M = EM (N-3)

cos E M = 1 (N-4)

cos E C = cos (E D- 2EM) = cos E D+ 2E M sine D (N-5)

cos Ep = cos (E D- E M) = cos E D +E M sinE D (N-6)

When these relations are substituted into the negative transpose of
,

Eq. (K-40), NCD for small E M becomes

, 2(1-e cos E D) E M
NCD = - n

i 121/2 -

(l-e) E M

2(1_ e2) 1/2
E M

1 - e 2 cos 2 E D

1

0

0

(N-7)
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In the limit as t C approaches t D,

, 2{1 -e cos E D) E M ,

NCD _ - n I3 (N-8)

From Eq. (N-2), when t C approaches t D,

When t C

. n i3 (N- 9)
KCD _ 2(1-e cos E D) E M

= t D, E M = 0, so that _DD is given by

KDD = _I 3 (N-IO)

Substitution of (N-10) into (N-l) indicates that the w vector corresponding

to t C = t D is infinite in magnitude and parallel to v R. Therefore, the

_D-axis is parallel to v R, in agreement with the result obtained by physical

reasoning.

N.5 Transformation Relations

The 3-by-3 matrix for transforming from r 1, r 2, r 3 coordinates to

_, T1, _ coordinates at any specified time will be designated _.

X=

P

cos _2

- sin _ cos i

sin _ sin i

sin _ 0

cos _ cos i sin i

- cos _ sin i cos i

X is an orthogonal matrix; therefore,

_-1 =_T

(N-If)

(N- 12)

Subscript W will be used to indicate that a vector is expressed in

terms of its components in the critical-plane coordinate system.
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The vector w for a given t C transforms as follows:

°t0

1

where X C is the transformation matrix evaluated at t = t C.

formation for v R is

(VR) W = X D v R

(N- 13)

The trans-

(N- 14)

X D is evaluated at t = t D. (N'13)may be combined with (N-I).

* * _D- 1(w) w = X C KCD (VR) W (N,15)

w< 0t0

1

°vR_c _cD_DT r°10 (N-16)

* * * T
The matrix product X C KCD X D , itself a 3-by-3 matrix, appears

in the equation for (Cv) w which will be derived in the next section.

Analytic expressions for the elements of _C ReD _D T can be found in

terms of the fixed angles % and iD and the time-varying elements of

KCD.
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From (N-16) it can be deduced that the elements in the third column
* * * T

ofX C KcDX D are 0, 0, and VR . In order to find the elements in the

first two columns of the matrix product, the following notation is introduced:

KCD = <

P

kll k12 k13

k21 k22 k23

k31 k32 k33

" T"
_kl

k2 T

k3T

> (N-17)

For i = 1, 2, or 3, --lk" is a vector with components kil, ki2, and ki3 along

the rl, r 2, and r 3 axes corresponding to time t D.

KcDXD = (XD KcDT } = XD (kl 1:2 _3 } T

={(_kl) W {k2} W (k3}w_ T

(kiT) I_ kl_ kl_

(--k2T}wl = lk2 _ k2_ k2_

(--k3T)wJ Lk3_ k3_ 1 k3_

(N- 18)

ki_, ki_, and ki_

respectively.

are the components of -:k' along the _D, _D" and _D axes,

{ki) w =

kil cos _D + ki2 sin _D

{kil sin_ D - ki2 cos _D ) cos i D

(kil sin _D - ki2 cos _D } sin i D

+ ki3 sin i D

+ ki3 cos i D

(N-19)
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* _D T expressed in terms of the k-components by EquationWith KCD

{No 18), the next step is to obtain similar expressions for the elements

of _C" The elements of the third row of _C are readily derived. _

T
W

_X T W) T *= C (w) = (wT) w X C

= w {0 0 I._ _C

v {o o  'wI, oD T,T

is

0 1 X C = sin_c sini C - cos % sini c

- _w 0 1 (KcD

= -W- 1_ k2_ k3_

The third row of X C

From (N- 20),

(N-20)

cos i C

(N-21)

2 T 2
w =w__ w=vR_

2
(kl_ 2 + k2_ + k3_ 2) (N-22)

w 2 2

VR - {kl_ + k2_

2 1/2

+ k3_ ) (N-23)
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With the aid of (N-21)and (N-23), the entire X C matrix can be written as

shown in (N-24). Only the _- components of the three k vectors are involved

in X C. Finally,* (N-18) and (N-24) can be combined to yield the expression for

XC* *KCD _D T given by (N-25).

X C -

(2 1/2 - k2r,, klr-
(kl_, 2 + k2_ )

1

•(klr2+ k2 2)I/2 (kl_ 2+ k2 2 +k3r2)1/2 - kl{,k3_ ' - k2_,k3_,

m _ J _ _ m w I m _ I _ _ _ m _ m m .

2 I/2 kl{; k2r,

_. (k IrD2 + k2r_2 + k3r_.)

0 )

kl_2 + k2{'2 /

(N-24)

_C KCD XD T •

2 1/2

(kl_ 2 + k2_ * )

_ k2_ ki_ _" klf _ k2_ - k2_ ks11 * klL, k2q

!

2 t/2 _
(kt{3 + k2{, ) . (k|_, 2 4- k_r. 2 t k3_ )

--.--

t

(kl_. 2 + k2_, 2 _" 3r..

(_ k3_'(kl_ kt_ * k2{ ' k2f;)

k3_ (kl(, 2 * k2_ 2)

- ksG (ktr _ k]._ * k3_ ' k_q)

• kaq(kit. a + ks£s)

(klW. kl_, * k2_ k2_ * k3r " k3_ kit. kiq ÷ k_jr. k2q * k3r j k3q
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N.6 Velocity Correction

In the critical-plane coordinate system both the VTA velocity cor-

rection vector and the miss distance vector become two-dimensional

vectors. Therefore, the matrix relating the two must reduce to a 2-by-2

matrix. The characteristics of this 2-by-2 matrix are investigated in

this section.

From Equation (M- 10),

, • (,(Cv).w= XcCv = - Xc I3 ww T )_'w T w KCD 5rD-

= _ X C ! 3 -
w 2

KCD XDT (SrD-) w

(w) w (wT)w_(,
= _ 13 - w2

\-) $ # $X C KCD XDT (5_rD-) w

(!0!1''"= - 1 X C KCD XDT (SrD-) w (N-26)

0

When (N: 25) is substituted into (N-26), the equation for the VTA correction

may be written as

_cW = Y (6p-) w (N-27)

The two-dimensional correction vector c w consists of the components

of _cV in the _C and TIc directions.

c w (N-28)
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(6£-) w

_D and _D directions.

1")6g D-

(sp-) w = _

511D

consists of the components of the miss distance vector 6_p- in the

' (N-29)

Y is the negative of the 2-by-2 sub-matrix made up of the elements of the

first two rows and the first two columns of _C _CD *XDT. This is indicated

in. Equation (N- 30).

* 1
y=

(kl_2.+ k2_21112 1

(kl_ 2 k2_ 2 k3_2) I/2 ( k3_(kl_kl_ +k2_k2_ k3_(k1_klqt k24_k2q}_ ' .
* * - k3g (klg2 + kzg2) - ksq (klg2 * k2_2) ]

(N- 30}

The terms in the first row of Y are independent of_k3; consequently,

the component of the correction along the line of nodes is not affected by

the elements in the third row of KCD.

The matrix Y may be simplified by introducing the angles a and _,

which are defined by the following trigonometric relationships:

k2 _ klsin a = cos a =

2 +k2 2)1/2 2)1/2(k1_ (k1 2 + k2

k31_
sin _ = cos p =

2 112
(kll _ + k2_ 2 +k3_ 2)

(N-31)

2

(kl +. k22)1/2

(kI_2
2

+ k2_ + k3_2) 1/2

(N- 32)
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Then Y becomes

y=

f

kl_ sin a- k2_ cos a

(kl_ cos a + k2_

- k3G cos

kl_sin a- k2_

sin a) sin _ {klT 1 cos a + k2T i

- k3n cos

cos a

sin a) sin

(N-33)

The _-components of the k-vectors no longer appear explicitly. Only the

G-components appear in the first column of _; only the _-components

appear in the second column. These observations may be related to the

velocity correction equation, (N-27), by stating that the coefficients of

6GD- contain only the g-components of the k-vectors, while the coefficients
D

of 5_D contain only the _-components.

N.7 Selection of Time of Correction

For a known miss distance vector, the optimum time of correction

is defined as that time for which the magnitude of the required correction

is a minimum.

Let the two-dimensional miss distance vector (6_p-) W

by a magnitude 5 p- and a phase angle _. _ is the angle in the gD -
m

plane between the _D-axis and 62 . From (N-29),

(6_p)w= {-I 16gD _ cos

=(6p )

5"qD L sin

be represented

T1D

(N- 34)

The square of the magnitude of the VTA correction is

2 T =Cv =Cw Cw (_e-)w_ "_T_.(_e-)w

(N- 35)
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m

It is apparent that c V varies linearly with 6p , but its variation with

is non-linear. Its variation with t C is also non-linear due to the dependence

of Y on t C.

The procedure to be followed in determining the optimum correction

time is to use Equation (N-35)to plot CV/6P- as a function of t C for a number

of fixed values of _. The minimum value of Cv/6P- for a given _ occurs at

the optimum correction time for that _. Finally, cross-plots are made of

(CV/6P-)min and t C opt versus _. The latter curve defines the optimum cor-

rection time as a function of the single parameter _ of the space vehicle's

variant path.

Although _ can have any value between 0 ° and 360 °, only values be-

tween 0 ° and 180 ° need be used in the plots, since an increment of 180 °

in _ reverses the direction of c V but has no effect on its magnitude.

N.8 Application to Two-Body Reference Trajectories

For two-body reference trajectories the elements k 13, k23' k31' and

k32 of KCD are all zero. From Equation (N-19), the three (ki) w vectors

are given by

w

f

J kl _

= klr 1

[kl 
J

ff kll cos _D + k12 sin _D

= - (kll sin P'D- k12 cos _D ) cos i D

L (kll sin %- k12 cos %) sin i D

(N- 36)

k2g

k2n

k2_

k21 cos _D + k22 sin _D

(k21 sin _D - k22 cos _D ) cos i D

(k21 sin _D- k22 cos %) sin i D

(N- 37)
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(k3) W =

k3_

k3(

0

k33 sin i D l
• k33 cos i D

(N- 38)

Then,

- k2 _ =
tan i D - kl_] k2T] k3 _

(N- 39)

The upper right-hand element of Y in Equation (N-30) becomes zero, and

the matrix may be written

I

kl_ sin a- k 2_ cos a
#
y=

(kl_ cos a+ k2_ sin a) sin

-%

0

(k 1 cos a+ k2, ]11

- k3T ] cos

sin a) sin

J

(N-40)

,

The triangular form taken by Y for two-body reference trajectories

indicates that for such trajectories the component of the correction in the

direction of the line of nodes at t C depends on only that component of the

miss distance which lies in the direction of the line of nodes at t D. This

partial uncoupling effect is somewhat surprising; it was not anticipated

when the critical-plane coordinate system was originally introduced.

It is of some interest to express the elements of Y in (N-40) in terms

of the fundamental parameters, namely, the elements of _[CD

,.L

and angles

_D and i D. Let Yij be the element in the i-the row and j-th column of Y.:
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Yll = kl_ sin a- k2_ cos a

- kl_ k2_ - k2_ kl_

2 i/2
(kl_ +k2_ 2)

_ 1 [(kll cos _3 + k12 sin _D ) (k21 sin _D- k22 cos _D)

- (k21 cos _D + k22 sin _D ) (kll sin %- k12 cos _D ) ]

• °

where

I k22).=_ (k12 k21 - kll

(kl_ 2 +k2 2)I/2

sin i D

(N-4l)

[(kil sin _D- k12 cos _D) 2 + (k21 sin _D- k22 cos %)2 1

Y21 = (kl_ cos a+ k2_ sin a) sin_

(N-42)

k3_ (kl_ kl_+k2_ k2_)

(k 1 2 +k2 2) 1/2 (kl 2 +k2 2 +k3 2)1/2

k33 v R cos i D

Aw [(kll cOS_D +k12 sin_D ) (k11 sin_D- k12 cos_D )

+ (k21 cos _D + k22 sin %) (k21 sin %- k22 cos _D )]

k33 v R cos i D _ k122 + k21Aw [(kl12 2 - k222) sin _D cos _D

+ (kll k12 + k21 k22) (sin2 _D- c°s2 _D ) ] (N-43)
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From (N- 23),

VR _ 2 k2 2 k3 2)-1/2-W- -(k1_ + +

(

= _[ (k11 sin _D- k12 cos _D )2 + (k21 sin f_D- k22 cos _D )2] sin 2 iD

2 2 _- i/2
+ k33 cos iD/

2 2 -_/2
= (A 2 sin 2 i D+k33 cos i D) (N-44)

Y22 = (kl_ cos a + k2_ lsin ed sin_ - k3T lcos

=kl_ (cos a+k2-----_ sin a)sin_- k3Tlcos _

k 2

(kl_ 2 k2 2)1/2 klt+ sin _- k3_cos

k1_ 2 I/2
=_ (kI +k2 2) sin _- k3_c°s

VR 2 2 1/2 k I k3_ _
=-_-(k I +k2_ ) ( k_l_ k3vl)

vR
= - -_ k33 A (N-45)
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Y for two-body reference trajectories is then

. 1 k22)7_ (k12 k21 - hl
0

#

Y=<

1 VR 2
A w k33 cos iD[(kll - k122

+ k212 - k222) sin _D cos _D

+ (kll k12 + k21 k22) (sin2 _D

2
- cos QD)]

(N-46)

N. 9 Evaluation of Parameters

The two fundamental parameters used in the analysis contained in

this appendix are the orientation angles _D and i D. They can be evaluated

by.means of Equations (N-11), (N-121, and (N-14).

v R =<

VR 1

VR 2

VR3"

= XDT (VR) w =v R

sin % sin i. -

- cos _D sini D

cos i D .

(N-47)

The components of_v R along the r 1, r2, and r 3 axes are known for the

specified reference trajectory. The desired angles are computed from

arc  ( /
!VR2

these components.

(N-48)

i D = arccos )/
(N-49)
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The quadrant location of each of the two angles is determined by stipulating

that each lies in the range between 0 and _ radians.

When _D and i D have been evaluated, the transformation matrix X D#

is computed from (N-11). This matrix and matrix KCD, the evaluation

of which has been discussed in Section L.6, are used to calculate the

components of the three k vectors in the critical-plane coordinate system.

From (N- 18),

kl_ kl n kl

<k2_ k 2 k 2

k3_ k3_] k3_

* * T
= KCD X D (N-50)

The elements of Y can then be determined from (N-30) or from

(N-33) used in conjunction with (N-31) and (N-32).

An estimate of the components of 5r D

is assumed to be available. Matrix X D transforms 5_r D

ponents along _D' 7]D' and _D axes.

so-)

X D 8r D- = (5_rD-)W = 5T]D > = >

6_ D _ 6_D- I

along the r 1, r 2, and r 3 axes

into its com-

(N-51)

Y and (5 P---)W are used to compute the components of the VTA velocity

correction along critical-plane coordinate axes by means of Equation

(N-27). The components of the correction along the r 1, r 2, and r 3 axes

are obtained from the equation

* T
_cV = X c c w (N-52)
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Equation (N-24) can be used to compute the elements of X C from the _-

components of the three k vectors, which have already been computed.

$

An alternative method of computing the elements of X C, which serves

as a partial check of the computing procedure, is by means of Equation

(N-13).

• Wl

w= w 2

Lw3

= KCD v R = XcT (w)W =w

-m% S*n 7
t.

- cos e C sin ic_

/
cos i C j

(N-53)

The components w 1, w 2, and w 3 are determined, and the angles _C and i C

are expressed in terms of these components.

w 1
(N- 54)

(w3)i C = arccos _ (N-55)

Both angles are restricted to the range 0 to _r radians. The elements of

X C can be found from the angles by the use of (N-11).

The angle _, used in determining the optimum correction time, can

be computed from Equation (N-34).

l
It has already been pointed out in Section N.7 that only values of _ in the

range0 to r radians need be considered in the procedure for optimizing the

time of correction; consequently, the angles computed by means of (N-56)

can be restricted to that range.
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The computational procedure is simplified in the case of two-body

reference trajectories. The matrix Y can be found from O,D, i D, and

the elements of KCD by the use of Equations (N-42), (N-44), and (N-46).

If the alternate form is used to compute _2 and i C, there is no need to

transform the k vectors into the critical-plane coordinate system.
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APPENDIX 0

SINGULARITIES IN THE MATRIX SOLUTION FOR

E LLIPTICAL TRAJE CTORIE S

O. 1 Summary

In the analytical development for elliptical trajectories presented

in Appendix K, it has been shown that the variations in the orbital ele-

ments_, represented by the vector 5e, can be expressed in terms of two

position variations 5r. and 6r.. The 6-by-6 matrix relating 5e to 5r.
--I -j -- --i

and 6rj is obtained by inverting the 6-by-6 matrix through which 6r i

and 5r. are expressed in terms of 5e However, the latter matrix

becomes singular and hence cannot be inverted, for three different

types of combinations of t i and tj. These three types are

(1) t.-t.=NP
j 1

(2) f. - f. = (2 N - 1) r
j 1

(3) X = 0

where N is a positive integer, P is the period of the reference tra-

jectory, and the factor Xis defined by Eqs. (K-14), (K-15), and (K-17).

This appendix examines the mathematical consequences of the

singularities and interprets them physically. Explanation of the first

two types of singularities is relatively simple. The third type is more

subtle; Lambert's theorem, in classical celestial mechanics theory,

is used in its interpretation.

If the time of midcourse correction is related to the nominal

time of arrival in such a manner that any one of the singularity con-

ditions is satisfied, no finite FTA velocity correction can be computed.
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The use of VTA guidance tends to mitigate the effect of the

singularities. For a correction time corresponding to either the

second or the third type of singularity, a VTA correction of finite

magnitude can be determined. However, if the correction time meets

the condition for the first type of singularity, the magnitude of the

computed correction is infinite even in VTA guidance.

O. 2 Preliminary Remarks

When the analytic solution of the guidance problem for elliptical

trajectories was first obtained, it became a matter of considerable

interest to find a physical explanation for the various singularities.

Singularities of the first two types had already been recognized by

Laning and Battin from their numerical studies. {See Pages 201 and

202 of Reference (5}}. There is no indication of the singularity at

X = 0 in any of the technical literature that has been reviewed.

The verbal disclosure of the X = 0 singularity was initially

greeted with a degree of skepticism, because, unlike the other types,

it did not have a physical interpretation that was immediately apparent.

Much of the skepticism was allayed when evidence of the existence of

this singularity was found in the computer data used in Reference (5}.

It was not until some time later that the mathematical connection

between the singularity at X = 0 and the minimum point on the time-of-

flight curve was proved and a physical explanation of the singularity

was presented.

O. 3 The Singular Matrix

The position variations 5 r. and 5 r. are related to 5e by the
-1 --j

equation

6ri = i

5rjJ- LFj

5e = A.. 5e (O-1)
-- 13 --

An analytic expression for the 3-by-6 matrix F. is given by Eq.
3

5e is defined by Eq. (K-l).

(K-31).
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It is the 6-by-6 matrix Aij, comprised of F i and Fj, that becomes

singular under the conditions specified in Section O. 1. When this matrix

is singular, the six components comprising 6r i and 6rj are not linearly

independent, and consequently all the elements of 6e cannot be deter-

mined uniquely.

The non-zero elements of A.. may be grouped into two sub-
1j

matrices, the first of which is the 4-by-4 matrix pertaining to motion

in the plane of the reference trajectory and the second of which is the

2-by-2 matrix pertaining to motion parallel to the z-axis. A singularity

may occur in either or both sub-matrices. The first four components of

6e are used in conjunction with the 4-by-4 sub-matrix; the last two

components of 6e are used in conjunction with the 2-by-2 sub-matrix.

Because the two types of motion are uncoupled, if a singularity

occurs only in the 4-by-4 sub-matrix, the last two components of 6e

can still be evaluated; conversely, if a singularity occurs only in the

2-by-2 sub-matrix, the first four elements of the 6e can still be

evaluated.

O_ 4 Mathematical Study of Singularities at (tj -___t i) = N P

The singularities for which (tj - t i) = N P will be examined first.

Even without mathematical analysis, it is intuitively reasonable to

expect that two position variations obtained at times that are an exact

number of reference periods apart will bear some relation to each

other and hence will not be independent.

In one circuit about the attractive focus, the change in each of

the three anomalies - real, eccentric, and mean - is exactly 27r

radians. Thus, when (tj - t i) = N P, the eccentric anomaly difference

is 2N_ radians. It may be deduced from Eq. (K-31) that the rank of

matrixAij is reduced to four when(tj - t i) = N P. The rank of the

4-by-4 sub-matrix is reduced to three, and the rank of the 2-by-2

sub-matrix is reduced to one.

Eq. (K-31) may also be used to show the relation between 6r.
--j

and 6r i for the singularity condition.
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5pj

5qj

6z.
J

p _

- 5pi'_

6qi,
I

[
I

3
-

, 2
I

I

L

0

(i + e cos E.) I/2
I.

(I - e cos Ei )I/2

2 N_ 6a

(0-2)

With the aid of Eq. (B-69), (0-2) may be expressed in terms of the

nominal orbital velocity v i and the nominal period P.

6 pj 5 Pi

6qj _ = _ 5qi

I

, 6zj I 6zi

0

3 5a
/- --NPv. --
, 2 1 a

I
.j o

(0-3)

.Eq. (0-3) can be solved for the third component of 5e.
m

1 5a _ 5qj- 5qi

2 a 3NPv.
1

(0-4)

1 5a
It is interesting that this unique solution for- m exists despite the fact

, 2 a
that A.. contains singularities in both of its non-zero sub-matrices.

1j

If t i is associated with t C, the time at which the correction is to

be applied, and if tj is associated with t D, the nominal time of arrival,

Eq. (0-3) becomes

5P D

5qD =

6 zD

5P C

5q C

0

-- 6a
3 NPvc
2 a

0

(0-5)
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If a position variation exists in either the PC or the z C direction

at time t C, that same position variation will exist at time t D irrespective

of the nature of the path traversed by the vehicle in the N circuits between

t C and t D. Linear theory does not permit the computation of a velocity

correction which, if applied at t = t C, will cause the position var{ations

6p and 6 z to be reduced to zero when t = tD.

In the special case when 6Pc = 0 = 6z C and 5qc i 0, it is possible

to compute a velocity correction c F which will enable the vehicle to

arrive at the desired destination at the proper time. The correction

required to reduce the predicted value of 6qD to zero is such that

(?)
+ 2 6qc 2 5qc

3NPv C 3NPv D

(0-6)

The + and - superscripts have been added to distinguish characteristics

of the corrected path from characteristics of the original path. From

Eqs.(O-5) and (0-6),

l a):+ 2 6qD +

3NPv D

so that the change in 6__a to be provided by the correction is
a

i } 2,qo-? ?

(0-7)

(o-8)

The velocity correction itself for this special case may be found

from Eq. (K-48) and (L-l).

c F = -KcD 5_r D n(1 - e cos E C) (cosE M+ e cosEp) 5qD-)( u
"-qc2(1 + ecosE C) X

(0-9)
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From Eqs. (K-14), (K-15), and (K-17), with E D - E C = 2 N _r,

Ep =1 (E D + EC ) = EC + N_r = E D - Nr
2

(0-10)

EM =I(E D- EC ) = NTr
2

(0-11)

X = (3E M - e sinE M cosEp) (cosE M

= 3N_r (cos E M+ e cos Ep)

+ e cosEp) - 4 sin E M

(0-12)

Eq, (B-62),(B-69), and (O-12) are used to simplify the expression

for c F given by Eq. (0-9).

c F : At (6qD) u - _ ( ) u
3 N Pavc2 -Clc 3 N Pa VD2 6qD --qD

(0-13)

• For this special case the correction is in the direction of the

nominal orbital velocity, and its magnitude is inversely proportional

to the square of the nominal orbital velocity.

O. 5 Physical Interpretation of Singularities at (tj - t i) = N P

The physical interpretation of the singularities at (tj - t i) -- N P

will l_e treated in two distinct phases. In the first phase a reference

trajectory is assumed, and the interpretation is based on linear per-

turbation theory. The second phase is more general; there is no

reference trajectory and no requirement for linearization.

For the first phase, consider a vehicle traveling in an elliptical

orbit which differs only slightly from a known reference ellipse. At

time t i the vehicle's position variation with respect to the reference

ellipse is determined from measurements, and at time tj, which is

exactly N reference periods later than t i, the position variation is

again determined.
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Let P be the period of the reference orbit and P' the period of

the actual orbit. If P' = P, it is obvious that 6r_i must be identical with

6r i. Any difference between 6rj and 6 r. must be proportional to

6P = (P' - P) and to N. 5r. may be expressed as follows:
-j

5r._j = 6r._1 - iv.-3+ 6vj)_ N 5P (0-14)

The minus sign is due to the fact that an increase in the period causes

a lag in the vehicle's position.

Since 6v. and 6P are both small quantities, linear theory reduces
-j

Eq. (O-.14) to

6r. = 6r. - Nv. 6P
--j -1 -j

6r i - N vj 6P u
- -qj

6r. - Nv. 6Pu

--1 1 --qi (O-15)

Kepler's third law states that p2 is proportional to a 3.

this law it follows that

From

6..__.P= _3 6a (0-16)

P 2 a

Therefore,

5rj. = 6r._1 - 32 N Pv i 6__aa-qiu (O-17)

Eq. (O-17) is exactly the same relationship that was previously obtained

as Eq. (O-3).

The foregoing discussion pertains to the problem of the determina-

tion of orbital elements from two position fixes. It can be directly

related to the problem of applying a velocity correction at t C which nulls
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the position variation at tD. The analysis is the same as that presented

in Section O. 4. Only if the predicted positionvariation at tD is in the qD-

direction can a finite velocity correction be computed by linear theory.

The computed correction for that case is given by Eq. (O-13).

For the second phase of the physical interpretation, a body is

assumed to be moving in an elliptical path about an attractive focus.

There is no a priori knowledge of the body's trajectory except for the

fact that it is an ellipse. At time t i the body's position relative to the

focus is measured. At time t. a second set of measurements indicates
J

that the body's relative position is exactly the same as it was at t i. In

the interval between t. and t. the body has completed N circuits about
i 2

the focus.

In this example the observed data consist of the times t i and tj,

the integer N, and the three components of position.

From t i, tj, and N, it is possible to compute the period P, the

mean angular motion n, and the semi-major axis a.

o -- t.

p- J J (O-18)

N

n - (0- 19)
P

a = _ (0-20)

The semi-major axis is the only one of the six orbital elements that can

be obtained from the available data; all the others are indeterminate.

Eq. (0-20) corresponds to Eq. (0-4) in the development based on

linear theory.

Now suppose that a space vehicle is in an elliptical orbit around

the sun. At time t C, when the vehicle is at point C, a velocity cor-

rection is to be applied such that the new orbit will enable the vehicle

to reach the desired destinationpoint D at time t D. The points C and

D are relatively close to each other compared to the distance of either

from the sun. The time interval (t D - t C) is approximately N times

the period of the vehicle's original orbit.
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Regardless of the orientation of the line C D, it is always pos-
sible to find a new elliptical orbit which will enable the vehicle to reach

D at the proper time. The plane of the new orbit must contain vectors

r C and r D, and its semi-major axis is determined by the required time
interval and the nUmber of circuits to be made between C and D.

If C D is parallel to v C , the velocity vector at t C before the cor-

rection, the new orbit will closely resemble the old. All that is required

is a small change in the period, which in turn causes a small change in

the semi-major axis. Thus, the velocity correction itself is small in

magnitude and can be computed from the linear theory. This situation is

represented by the points C 1 and D in Fig. O. 1.

On the other hand, if point C has any arbitrary position in the

vicinity of D, the required new orbit will in general differ drastically

from the original orbit, and the velocity correction will be so large in

magnitude that it cannot be determined from the linear theory.

Two special cases serve to illustrate this point. In the first, the

vehicle is situated at C 2 in Fig. O. 1. C 2 lies along the radial line

connecting the focus (sun) with D. In this case, the new path is a

rectilinear ellipse; i.e., a straight line of finite length. Obviously,

the velocity correction required to change from an orbit such as the

one indicated in the sketch to a rectilinear ellipse is sizable.

In the second special case C D is parallel to the z-axis; i. e., C

is directly above or below D (out of the plane of the paper) in Fig. O. 1.

The new path is then an ellipse in the rD-z plane. If the distance C D

is small, the velocity vector immediately after the correction, Vc +, is

perpendicular to position vector -r-c; therefore, F C lies along the line

of apsides of the new trajectory, and C is either at perihelion or at aphelion.

It is clear that the magnitude of the correction required to rotate the

trajectory plane through 90 ° is beyond the scope of the linear theory.

O. 6 Mathematical Study of Singularities at (fj -___fi ) = (2 N - 1) 7r

When (fj fi ) = (2 N - 1) r the rank of matrix _.. is reduced to, 13
five. The rank of the 4-by-4 sub-matrix is unchanged; the rank of the

2-by-2 sub-matrix becomes one.

Since the 4-by-4 sub-matrix is not singular under these con-

ditions, the four components of 6e relating to motion in the reference
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C2 e Cl

F

F

D --

CI,C 2 -

Vc-_

attractive focus (sun)

de stination point

possible vehicle positions at time of correction

vehicle velocity vector just prior to application of

correction

.r D - vehicle position vector at destination

t C - time of correction

t D - time of arrival at destination

P - nominal period

Figure 0.1 Special Cases of Vehicle Position at Time

of Correction for Singularities at tD - t C = NP
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trajectory plane can be determined from

is singular.
5 r i and 5 r. even though Ai.j

The dependence of 5zj and 5z. is made apparent by use of Eq. (H-15)1

_Z.
1

ro

1

= 5i sin(f.- 5_) (O-21)
1

With fj = fi + (2 N - 1) _r,

_Z.

= - 5i sin(fi -

rj

5_) (0-22)

Then,

r°

5z. = -_ 5z. (O-23)
j 1

r i

Obviously, 5 z i and 5 zj cannot be used to obtain the two elements

of 5e which describe the variant motion normal to the reference tra-

jectory plane.

If the correction time and the arrival time are such that

(fD - fc ) = (2 N - 1) _, Eqs. (K-48) and (L-I) indicate that a finite
D

FTA correction can be computed only if 5z D = 0. In that special case,

the velocity correction vector c F lies in the reference trajectory plane.

O. 7 Physical Interpretation of Singularities at (fj - fi ) = (2 N - 1) _r

Consider a body in an elliptical orbit about an attractive focus F,

as shown in Fig. O. 2. The orbit must lie in one plane; therefore, if the

body passes through point C, it must eventually pass through some point

such as D, which lies on the extension of CF through F. This state-

ment has general validity, irrespective of the nature of the elliptical

trajectory and of the inclination of the trajectory plane. Thus, the

position of the body at D is not completely independent of the position

at C.
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REFERENCE
TRAJECTORY

D I

D

REQUIRED
TRAJECTORY

F

C

F - attractive focus (sun)

D - destination point

C - position on reference trajectory corresponding to t = t C

C' - position on actual trajectory corresponding to t = t C

D' - predicted position at t = t D if no correction is applied

t C - time of correction

t D - time of arrival at destination

Figure 0.2 Effect of z-Component of Position Variation when

fD- fc = (2N-1)y
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Suppose that at time tC a vehicle is at point C' and the corresponding

point on the reference trajectory is C. The distance CC fs parallel to the

z-axis and small. A correction is to be applied at C' such that the

vehicle will arrive at the prescribed destination point D at time tD.

If no correction is made, the vehicle's position at tD will be D'. This

example is similar to the second special case cited at the end of

Section O. 5.

The corrected trajectory must contain the line segments F C' and

F D. The plane containing these two segments is the rC - z plane, which

is perpendicular to the reference trajectory plane. As stated in Section

O. 5, the magnitude of the velocity correction required to rotate the tra-

jectory plane through approximately 90 ° is beyond the scope of linear

theory and hence cannot be computed by the use of that theory.

Any small velocity correction applied in the z-direction when the

vehicle is at C' has the effect of rotating the trajectory plane about the

axis D' F C,. The size and shape of the orbit are not affected, so that

the vehicle must pass through D' at time tD.

O. 8 Numerical Example of Singularities at X = 0

The singularity factor X is defined by Eqs. (K-14), (K-15), and

(K-17), which are repeated here for convenience.

X = (3 E M - e sinE

where

M cos Ep) (cos E M + e cosEp) - 4 sinE M

(0-24)

Ep =i (Ej+ E i) (0-25)
2

EM = I(E - E i) (0-26)
2 J

Unlike the first two types of singularities, those for which X = 0 depend

on the reference trajectory, as indicated by the presence of the eccen-

tricity e in Eq. (O-24).
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Because the formulation for X in Eq. (O-24) may be considered

somewhat formidable, a graph of X versus (Ej - E i) is presented in

Fig. O. 3. The plot is made for a varyingE i, with e andEj held

constant. The value of e is 0.25, a typical value for journeys to Venus

or Mars. The angle Ej is 210°, which is representative of an inbound

journey from Venus to Earth or an outbound journey from Earth to

Mars. The plot covers the range 0 ° to 1800 ° in (Ej - El).

Although Fig. O. 3 is drawn for specific values of e and Ej, it

is characteristic of the relationship between X and (Ej - E i) for any

value of e in the elliptical range and any angle Ej.

There are several interesting characteristics of the curve. It has

the general appearance of a sinusoid whose amplitude is steadily increas-

ing as (Ej--E i) gets larger. At (Ej - E i) = 0, both X and its partial

derivative with respect to (Ej - E i) are equal to zero.

The zero crossings of the curve are of particular interest, since

those are the points at which the matrix A.. becomes singular. There is
1j

no zero cI'ossing for 0 ° < (Ej - E i) < 360 °. For each succeeding interval

of 360 ° there is one zero crossing.

3E M

proache s infinity,

As (Ej - E i) gets large, the curve is dominated by the term

(cos E M + e cos Ep). In the limit as the anomaly difference ap-

X

E M -_
= 3 (cos E M+ e cos Ep)

2 sin E M
[ sin (Ej - E i) + e (sinEj - sinEi) ]

(O-27)

The special case of sin E M = 0 constitutes a singularity of the first type,

which has already been discussed, and hence will be ignored in this

analysis.

For large values of (Ej - Ei), the singularity occurs when the

limit expression of Eq. (O-27) is equal to zero.
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= (Ej - . - sinE i)0 sin E i) + e (sin Ej

• .+e)
= sin E3 (cos E i+ e) - sinE i(cos E 3

2 2)1/2a (l-e

[(xi+ 2 a e) yj - (xj+ 2-a e) yi]
(0-28)

Then the condition for the existence of the singularity at large values of

(Ej - E i) is

YJ Yi
: (0-29)

xj+ 2ae xi+ 2ae

The distances (x i + 2 a e) and Yi are, respectively, the x and y

components of the distance of the point Pi on the ellipse from the vacant

focus. Thus, when (Ej - E.)I is very large, the singularity condition

occurs when the straight line through the points Pi and P] on the ellipse

passes through the vacant focus.

Table O-1 lists the points at which the first few singularities

occur, as well as the singular point for (E. , E i) -4"oo. The symbol N]

in the table denotes the number of complete circuits between E i and Ej.

For a fixed point Pj, the effect of increasing N is to move the

corresponding singular point Pi along the ellipse from Pj toward the

point at which the straight line through Pj and the vacant focus inter-

sects the ellipse. The singular point approaches the latter point

asymptotically as N tends toward infinity. The progression of Pi is

illustrated in Fig. O. 4.
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e= 0.25

E2 = 210 °

P

I
F

C - center of ellipse

F - attractive focus

F' - vacant focus

P. - fixed destination point on ellipse
J

Po" P1 ..... PN .... P - singularity points for each value of N

N _ number of complete circuits between PN and Pj

Figure 0.4 Positions of the Singularities at X = 0
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TABLE O- 1

The Singularity Points X : 0 for e = 0.25 and E. = 210 °
J

N Ej - E i Ej - E i - N360 ° E i + N360 ° fi + N360 °

0 0 ° 0 ° 210 ° 204 _

1 482 ° 122 ° 88 ° 102 °

2 860 ° 140 ° 70 ° 84 °

3 1227 ° 147 ° 63 ° 77 °

4 1589 ° 149 .° 61 ° 74 °

¢_ _ 162 ° 48 ° 60 °

O. 9 Mathematical Stud_, of Singularities at X = 0

The singularities at X = 0 reduce the rank of the 4-by-4 sub-matrix$

of Ai_J to three and have no effect on the rank of the 2-by-2 sub-matrix;

the rank of A.. is reduced from six to five. (This discussion of the
1j

singularities for which X = 0 does not apply to the trivial case, E. - E. = 0. )
j 1

,When X = 0, there must be a linear relationship between 5pi, 5qi,

5pi, and 5qi. After some algebraic manipulation of Eq. (K-13) and the use
aJ

of several of the celestial mechanics relations of Appendix B, this linear

relationship may be written as

pj 5qj - Pi 5qi

b (3E M - e sine M cosEp) (cos _,j
2

5pj + cos Yi 5Pi)

(O-30)

where b = a (1 - e2) 1/2 is the semi-minor axis of the reference ellipse.

When correction time t C and arrival time tD are such that X = 0,

it is possible to compute a finite FTA velocity correction only if 5Pc

and 5qc are related to each other in the manner defined by setting 5pj

and 5qj equal to zero in Eq. (O-30} and substituting 5pc for 5Pi, 5qc

for 5qi. The relation between 5pc and 5qc is then given by

22_)



5Pc _ 2 r C

6qc b (3 E M - e sinE McosEP)

(O-31)

Eq. (O-31) specifies the ratio of the two components of position

variation at t = t C but does not stipulate any particular value for either.

Thus, when X = 0, a finite FTA correction can be applied only if the

position variation component in the reference trajectory plane at time

t C lies along the line defined by Eq. (O-31). In Fig. O. 5 this line is

indicated as ACB.

Let /_C be the angle between line ACB and the qc-axis. Then,

6P C
tan/1 C -

6q C

(0-32)

Because r C and b are normally of the same order of magnitude and E M

is large at the singularity points, the angle /_C is small. As N gets

larger, bLC gets smaller, until finally ACB is parallel to the qc-axis

when N approaches infinity. Table O-2 lists /_C as a function of N for

the conditions used in the plot of Fig. O. 3.

By substituting Eq. (O-31) into (0-30), a relation is obtained for

the ratio of the predicted position variation components 5PD and 5qD

for the special case when a finite correction can be computed at X = 0.

5 PD 2 r D

5qD b (3 E M - e sin E M cos Ep)

(0-33)

The line defined by Eq. (O-33) is HDK in Fig.

between HDK and the qD-axis is designated YD"

6P D

tan bt D -
5q D

0.5. The angle

(0-34)

Table 0-2 lists values of /IDas well as _t C.
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H

D

C -

v C -

FPc,Fqc -

ACB -

_C -

v D -

FPD, Fq D -

HDK -

_D-

A

v c

C

qc
B

°F0
F

PD

D

nominal destination point

singularity point corresponding to.D

nominal velocity vector at C

instantaneous position of flight path system coordinate

axes at t = t C

straight-line locus of points at which a finite velocity

correction can be computed

angle between ACB and qc-axis

nominal velocity vector at D

instantaneous position of flight path system coordinate

axes at t = t D

straight-line locus of predicted destination points if no

correction is applied at t = t C

angle between HDK and qD-axis

PC

Figure 0.5 Special Case for which Velocity Correction Can Be

Computed at X = 0
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Angles PD and _C are related by the equation

tan /_D rD
m

tan _C rc

(0-35)

N

TABLE O-2

Angles _C and _D at X = 0 Singularity Points

e = 0.25 E D = 210 °

5 PC 5 PD
#C

5 qc 5 qD
_D

2

3

4

0. 1600 9 ° -0. 1967 -11 1 o

4

O. 0833 4 3 o -0. 1110 - 6 1 °

4 4

0.0569 3--1 o -0.0780 - 4--I o

4 2

0.0437 2--1 o -0.0602 - 3--I o

2 2

oo 0 0 ° 0 0 °

The velocity correction for the special case is determined by sub-

stituting Eqs. (O-33) and (K-48) into (L. 1); the resulting equation is

(O-36). The likelihood of the occurrence of a situation in which the cor-

rection given by Eq. (O-36) can be utilized is minuscule. The special

case is of interest only in the academic sense.

O. 10 Lambert's Theorem

As an introduction to the physical interpretation of the X = 0

singularities, this section presents a brief summary of Lambert's

theorem and some of its ramifications. The derivation given is based

on that of Plummet (29); the ensuing discussion is related to the work of

B attin (1).
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cosE M+ • co-,Ep 0

n

e F " °

(I - • 2 cos 2 EC )I/2 (I - • ] cos 2 ED )I/2

sin E M

I( I . e2)I/2(i . (,cose C )

0 , )
(co- E M - • co" Ep) ,,in E M

(0-36)

6PD"

6ZD" I

The Lambert problem may be stated as follows: A body is moving

about an attractive focus at F in an elliptical trajectory whose semi-major

axis is a. It is desired to find an expression for the time required by the

body to travel from an arbitrary point P to an arbitrary point Q on the tra-

jectory. This expression is to be independent of the eccentricity of the

trajectory.

The given data consist of the space triangle FPQ in Fig. O. 6 and

the semi-major axis length a. The position of F', the vacant focus, is

not known; neither is the eccentricity e. The known distances FP, FQ,

and PQ are designated r 1, r 2, and d, respectively.

The subscript 1 is used for conditions at point P; the subscript 2

is used for conditions at point Q. The time of flight t F is

tF = t2 - t 1 (0-37)

In this section, Ep and E M are given by

Ep = 1 (E 2 + E1 )
2

(0-38)

EM =I(E2 - E1 )
2

Three additional angles are used in the derivation.

fined by the following equations:

(0-39)

They are de-
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F -- attractive focus

F' -- vacant focus

P -- initial position

Q - final position

Figure O.6 Illustration for Lambert's Theorem
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cos 77= e cos Ep (0-40)

a =_+E M (0-41)

=_-E M
(0-42)

With the aid of Eqs.

equation may be written as

(B-45), (B-55), and(B-62),

tF : 1 (M 2 _ M1 )
n

the time-of-flight

=--I[(E2 _ E1 ) _ e (sinE 2 - sin E1)]
n

= 2 (E M _ cos _ sinE M)
n

= [(a - _) - (sin a - sin (3)] (0-43)

Eq. (0-43) in itself does not solve the Lambert problem, since

a and _ are known only in terms of e. The task now is to express a and

in terms of the known quantities r 1, r 2, d, and a. As a start, (r 1 + r 2)

and dare found in terms of a, _}, andE M.

r 1 + r 2 = a (1 - e cos E 1 ) + a (1 - e cos E 2)

= 2 a(1 - cos ?7 cosE M) (0-44)

d2 = (x2 - Xl )2 + (Y2 - Yl )2

= a 2 (cos E 2 - cos E1 )2 + a 2 (1 - e 2) (sinE

= 4 a2 sin 2 2rI sin E M

2 - sin E1 )2

(0-45)

d = 2 a sin W sinE M (0-46)
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By first adding Eq. (O. 46) to (0-44) and then subtracting Eq. (0-46)

from (O-44), it may be shown that

2 a rl + r2 + d
sin - = (0-47)

2 4a

sin2 _ _ r 1 + r 2 - d- - (O-48)
2 4a

The combination of Eqs. (0-43), (0-47), and (0-48) constitutes the

solution of the Lambert problem. By means of the three equations, t F

is determined as a function of (r 1 + r2), d, and a.

There are two possible sources of ambiguity when Eqs. (0-47) and

(0-48) are used to compute a and _. The first arises from the sign of

the square root; the second involves the determination of the quadrant of

an angle whose sine is known. The ambiguities may be resolved by

arbitrary definitions in Eqs. (0-47) and (0-48), and modification of

Eq. (0-43) to accommodate these definitions.

The positive sign is chosen for sin (a/2) and sin (_/2). It is further

stipulated that both a� 2 and _/2 lie in the first quadrant. Then the follow-

ing inequality defines the ranges of a and _:

0 <_ <a < 7r (0-49)

Eq. (0-43) must be revised not only because of the arbitrary

definitions of a and _ but also due to the fact that there may be N complete

circuits of the focus between t 1 and t 2. The revised equation is

t F = [(2 N + 1)_ + sgn(sin _) (a - sina - _r)

- sgn (sin 8) (_ - sin _)] (0-50)

The angles 8and _b are shown in Fig. O. 6. O is the angle subtended at F

by the initial position P and the final position Q; # is the angle subtended
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at F' by P and Q. Both 8 and @are positive in the direcbion of the orbital

motion. The symbol "sgn", or signum, is defined by the relations

sgn (x) = + 1 if x > 0

sgn(x) = 0 if x = 0 (O-51)

sgn(x) = - 1 if x <0

Eq. (0-50) can be solved for the proper time of flight for any

combination of P, Q, and F except for the case when points P and Q

coincide. In this special case, the signum notation causes an incorrect

result; the correct time of flight is simply N times the period.

There is also a restriction on the semi-major axis; it must be

large enough so that the values of sin 2 (a/2) and sin 2 (_/2), obtained

from Eqs. (0-47) and (O-48), are never larger than unity. Thus, the

minimum value of a is

r 1 + r 2 + d
= (0-52)

amin
4

Battin (1) has shown that for a given space triangle FPQ and a

given value of a which is greater than ami n, there are two possible

elliptical paths from P to Q. These are shown in Fig. O. 7. The two

vacant focus positions are F' and F'. The line PQ is the perpendicular

bisector of the line joining F' and F'.

Since the value of a is the same for the two ellipses, they both

have the same period. Kepler's second law states that the radius vector

(from F) sweeps through equal areas in equal times. Then, for each of

the two ellipses the time of flight from P to Q is equal to the period times

the ratio, for that ellipse, of the area of the sector FPQF to the total area

of the ellipse. If all motion is assumed to be counter-clockwise in

Fig. O. 7, it is apparent that the area ratio for the ellipse whose vacant

focus is F' is less than the area ratio for the ellipse with vacant focus at

F', and therefore, t F, the time of flight for the former ellipse, is less

than _, the time of flight for the latter.
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I

F

F N

P -

Q-

F',I_' -

attractive focus

initial position

final position

two permissible vacant foci for same value of a

AB = CD = 2a = length of major axis of each ellipse

F'F'_J_ PQ; F'E = EF'

Figure 0.7 The Two Ellipses for a Given Space Triangle and a

Given Length of the Major Axis
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The relation between t F and _F can be developed mathematically

from Eq. (O-50). With the exception of the angle _, all the quantities on

the right-hand side of that equation are the same for both ellipses of

Fig. O. 7. The coefficient of sgn (sin _) in the equation is (a - sin a - _r )

which, for a > ami n, is always negative. Therefore, the time of flight

for a value of _ less than 7r radians is smaller than the time of flight

corresponding to _ greater than 7r radians. Because the triangles PF'Q

and P F' Q are congruent, the sum of angles _ and _, shown in the

figure, is 2 7r radians. Since the angles are not equal except in the

special case a = ami n, one must be less than 7r radians and the other

greater than 7r radians. If the tilde notation is associated with the value

of _greater than lr tF is always greater than t F. The difference be-

tween t F and t F is

/_/ 1/2
_F- tF = 2 (_r - a + sina) (O-53)

O. 11 Minimum Time of Flight

In this section it will be shown that, for a given space triangle

FPQ, the rate of change of the time of flight with change in semi-major

axis is proportional to the factor X, and consequently a singularity of

the X = 0 type occurs when the time of flight is a minimum.

Figure O. 8 is aplot oft F vs. a for a journey from Earth to

Mars: For such a journey r 1 = 1 astronomical unit (a. u. ), and

r 2 = 1.524a. u. Curves are presented for three values of 0at N = 0

and for the same three values of O at N = 1. Figure O. 8 duplicates

the curves of Fig. 3-3 of Reference (1).

It may be noted that the curves corresponding to N = 0 have no

minimum values of t F for any finite value of a. As a is increased

beyond ami n, the two possible values of t F get farther and farther apart,

one continuously increasing and the other continuously decreasing.

Each of the curves for N = 1 has a definite minimum value of

tF; the minimum t F for each curve occurs at a value of a that is

slightly larger than ami n for that curve.

230



3

¢/)
lib

a) 2

U.

"!-
(.0

.-I
LI.

Iz.
0

hi
=E
r-- i

o ----_
0

rt=l.O a.u.

r2 = I. 524 a. u.

N=I

N=O

I I I I I

1.0 I.I 1.2 1.3 1.4

SEMI-MAJOR AXIS, 0 (o.u.)

8 = 75 °

115 °

= 155 °

8 = 75 °

115°

= 155 °

1.5

Figure O.8 Time of Flight for One-Way Trip from Earth

to Mars

231



If curves were drawn for values of N greater than one, they would

also exhibit the characteristic of a minimum t F. As N gets larger, for a

given 8, the distance between ami n and the a corresponding to t F

gets smaller, rain

In order to gain further insight into the time-of-flight curves and

their minima, an analytic expression for the slope will be derived. In

this section the notation 8 ( )/Sa signifies the partial derivative of the

argument with respect to a, with r 1, r 2, d, and N all constant. Inasmuch

as there are no ambiguities involved in the differentiation, the expression

for t F given byEq. (0-43) will be used rather than the more complicated

Eq. (0-50).

6 t F 1 [a_ 1/2

8a =2 3 (a - _) - 3 (sina - sin _)

+ 2a(1 - cos a) 8._a _ 2a(1 - cos _) 8.__
8a 8a

8a/Sa is obtained by differentiating Eq. (0-47).

(0-54)

a a 8a rl + r2 + d
sin- cos - (0-55)

2 20a 2
4 a

Oo. = _ 1 - cos a = __1 tan _a (0-56)

8a a sina a 2

8_/Sa is obtained in similar fashion from Eq. (0-48)

.8(3 _ 1 - cos (3 _ 1 tan--_ (0-57)

8a a sin [5 a 2

Eqs. (0-56) and (O-57) are substituted into (O-54). After some

trigonometric manipulation, the result is
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8tF I

8a 2

-4

_/ 1/2 [3 (a - _) - (sin a - sin _)

tan -- - tan (O-58)

The tangents of the half-angles in Eq. (0-58) may be replaced in

the following way:

4

---4

I

1 - cos a 1 - cos_ I

Isin a sin

4 [sin (a - _) - (sin a- sin _)]

sin a sin

4 [ sin 2 (a - _) - (sin a - sin _)21

[ sin (a - _) + (sin a - sin _)] sin a sin

8 [I- cos(a-_)]

sin (a - _) + (sina - sin_)

(0-59)

Eqs. (0-58) and (0-59) are combined.

8 t F _ 2

aa Sin (a - _) + (sin a - sin _)

.{[3 (a - _) - (sina - sin_)] [sin (a - _) + (sin a - sin _)]

- 8 [i - cos (a - _)1} (0-60)

It will now be shown that the quantity within the braces in Eq. (O- 60)

is proportional to the singularity factor X.
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From Eqs. (O-40), (O-41), and (0-42),

a-_=2E M
(0-61)

a +p = 2v I (0-62)

sin a - sin 13 = 2 cos

= 2 cos 7/ sinE M

= 2e cosEp sinE M
(0-63)

Eqs. (O-61) and (0-63) are substituted into (0-60),

numerator and denominator are divided by 2 sin E M.

8 t F _

8a cosE M+ e cos Ep

and both

[(3 E M - e sinE M cos Ep)(COS E M + e cos Ep) - 4 sin EM]

(0-64)

The quantity inside the brackets is identical with the expression

for X in Eq. (0-24). Finally,

) i/2
a X

8 t F _

8a cos E M+ e cos Ep

(0-65)

Thus, it has been proved that the slope of each time-of-flight

curve is proportional to X, and the minimum time of flight, if it exists
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for a particular curve, occurs at the X = 0 singularity point for that

curve.

O. 12 Physical Interpretation of Singularities at X = 0

In the preceding section it was shown that the time of flight, as

depicted in the curves of Fig. O. 8, is insensitive to small changes in

the semi-major axis when X = 0. In this section, it will be proved that,

for a given vector r I and given values of t F and N, the vector r 2 is

insensitive to small changes in the semi-major axis when X = 0, and

consequently it is not possible to apply a small velocity correction at

t 1 which will alter r 2.

Consider a case in which r 1, t F, d, and N are specified, and r 2

is'regarded as a function of a. The partial derivative of the time-of-

flight equation, (O-43), is taken with respect to a.

0 2= -- [(a - _) - (sin a - sin _)]
2

4 1 - cos a) 8a

r 1 , t F,

(:aS(1 - cos 13). _13

r 1, t F, d,

d, N

(0-.66)

The subscript symbols following the partial derivative indicate

the quantities that are being held constant.

From Eqs. (O-47) and (O-48}, the partial derivatives in Eq. (O-66)

may be expressed as

r l, t F, d, N 2a sina L\ 8a ] r 1, t F, d, N 2

(0-67)
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0 p)
_a rl, t F, d, N 2 a sin E(°r2/ ]- 4 sin 2 _--

_-_-a / r 1, t F, d, N 2

(0-68)

Eqs. (O-66), (O-67),

(Sr2/Sa)
r1, tF, d, N"

and (0-68) are combined and solved for

r2 / _ X

-_a ] r 1, t F, d, N sinE M

(0-69)

The derivation of Eq. (0-69) involves a division of numerator and

denominator by sin EM; therefore, the equation is not valid for the

special case when sinE M = 0; i.e., when(E 2 - E 1) = 2N_ = (f2 - fl )"

In general, for sin E M / 0, the rate of change of r 2 with a is proportional

to X.

As a second case, consider r 1, t F, r 2, and N to be specified, and

d to be a function of a. The same procedure as that of the first example

is followed. The equations analogous to Eqs. (0-66) through (0-69) are

2

[(a - _) - (sina - sin _)]

I(1- cosa)(8-_a ) rl' tF' r2' N

-(l-cosp)(8 -a)
r 1, t F, r 2,

(o-7o)

r 1, t F, r 2, N 2asina r 1, t F, r 2, N

2
4 sin

2

(0-71)
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r 1, tF, r 2, N 2 a sin_ r 1, tF, r 2, N 2

_ x
r I, t F, r 2, N sinT/

(O-72)

(0-73)

From Eq. (0-40),

2
sin _ = (I - e

2
COS Ep) 1/2 (0-74)

Because the denominator term in Eq. (O-73) is obtained by dividing
2

+ sin 7/by + sin _/, the positive sign must be used for the root in

Eq. (0-74). For values of e less than one, sin 77 cannot be zero, and

hence Eq. (0-73) always produces a finite value of the partial derivative.

Eqs. (O-69) and (0-73) indicate that (ar2/Sa) rl' tF ' d, N and

(ad/0a) rl' tF ' r2' N are proportional to X. For given values of r 1,

t F, andN, ifX = 0, the distances r 2 and d are unaffected bya small

change in the length of the semi-major axis. From Figure O. 6 it is

apparent that, if F and P are fixed points and r 2 and d are unaffected

by small changes in a, then the point Q is unaffected by small changes

in a. Therefore, under the given conditions, the vector r 2 is in-

sensitive to small changes in a when X = 0. Vectors r 1 and r 2 are

not independent when X = 0.

When small changes in the semi-major axis a are mentioned, it

should not be inferred that the other three orbital elements defining

motion in the trajectory plane are unaffected. The changes in all four

elements must be related in such a manner that the given vector r 1 is

conserved. Then the conclusion reached in the preceding paragraph

may be generalized to indicate that, with r 1, t F, and N specified such

that X = 0, the position vector r 2 is not affected by small changes in the

orbital elements defining motion in the trajectory plane.
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Therefore, it is not possible to compute a small step change in

velocity which, if applied at t 1, will alter (i. e., "correct") the position

of the vehicle at t 2.

In recapitulation, the developments in the last three sections

establish a connection between the X = 0 singularities, which evolve

from linear perturbation theory, and Lambert's theorem in celestial

mechanics. Whenever there is a minimum in the curve of time of

flight versus semi-major axis length for fixed values of r 1, r 2, d, and

N, that minimum occurs under conditions for which X = 0. By the use

of partial differentiation on the time-of-flight equation of Lambert, it

has been shown that, for a given r 1, the position vector r 2 is unaffected

by small changes in the orbital elements when X = 0, and consequently

it is not possible to compute a small velocity correction which, if

applied at t 1, changes the vehicle's predicted position at t 2.

The special case discussed in Section O. 9, for which it is pos-

sible to compute a velocity correction even though X = 0, is not

explained by the analysis that has been presented in this section.

O. 13. Anal_tic Formulation of the VTA Velocity Correction

It has already been shown that, in general, it is not possible to

compute a finite FTA velocity correction when t C and t D are related in

such a manner that any one of the three types of singularities exists. In

the following sections, the feasibility of applying a finite VTA correction

under these conditions will be investigated.

In the critical-plane coordinate system the relations defining the

VTA correction are Eqs. (N-27) and (N-46), which are repeated here

for convenience.

_cw : y (sp--) w (0-75)

where
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Y

1 (k12 k21 _ kl I k22) 0
A

1 VR 2
k33 cos i D [(kll 2 - k12

A w

2 _ k222) sin _D cos _D A vR+ k21 - _ k33
W

+ (kll k12 _- k21 k22) (sin2 _D

2
- cos _D )]

(O-76)

In order to emphasize the effect of the singularities, the elements

kll, k12, k21, k22, and k33 will be replaced byKll, K12 , K21 , K22 ,

and K33, respectively. The new terms are defined in such a manner

that they remain finite even under the singularity conditions. With the

aid of Eq. (K-48), they are expressed as follows:

1 X sin E M k IIKII = _
n

(1 + e cosE C ) (1+ e cosE D) (3E M - e sinE M cosEp) - 4 sinEM(COSEM+ e cosEp}

1
KI2 =-- X sinE Mkl2

n

2 2 1/2 e 2 2 1/2
2 (1 - e cos E C) (1 - cos E D)

(1 - e2) 1/2 (1 - e cosE D) sin 2E M

2 2 1/2 2 coS2ED)I/2(1 - e cos E C) (1 - e

(0-77)

(0-78)
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K21 =I X sinE Mk21
n

(I - e2) I/2 (I - e cosE C) sin 2 E M

2 1/2 2 2 1/2
(I - e cosE C ) (I - e cos E D)

(0-79)

1

K22 =-- X sinE Mk22
n

(1 - e cos E C) (1 - e cosE D) (cos E M+ e cosEp) sinE M

2 (1 - e 2 cos 2 EC)I/2 (1 - e 2 cos 2 ED)I/2

(o-80)

1
K33 =_

n

si_ (fD - fc ) k33

sin (fD - fc )

2 sin E M (cos E M - e cos Ep)

2)1/2(I - e (O-81)

(1 - e cosE C) (1 - e cosE D)

The terms A and vR/w in Eq. (0-76) can be expressed as functions

of the K's. From Eq. (N-42),

A = [(kll sin _D - k12 cos _D )2 + (k21 sin _D - k22 cos _D)2] I/2

nB

X sin E M

(0-82)
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where

B = [(Kll sin _D

From Eq. (N-44),

- KI2 cos _D )2 + (K21 sin _D - K22 cos _D)2] 1/2

(0-83)

VR 2 2 2 -1/2
- (A 2 sin i D + k33 cos i D)

W

inl B2si2iD + 2 2 ]-1/2

....... z33 co __i_D

X2 sin2 EM sin2 (fD- fc )

(0-84)

The parameter B, like the K factors, remains finite at the singularity

points.

,
The elements of Y can now be written in terms of the K's. A

simple form for the upper left-hand term, YlI' is obtained by the use

of Eq. (K-53).

Yll
1

A.

(k12 k21 - kll k22)

2
n

4 X sin E M n

nB 4B

X sin E M

(0-85)

The expression evolved for Y is

= nY

4B
0

K33 (D cos i D
C B

-B

(0-86)
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where

• 2 X 2 2C : [B 2 sin 2 (fD - fc ) sin2 1D + K33 sin E M cos 2 iD ]1/2

2 2 K222) sin _D cos _DD ='(KII - KI22 + K21

+ (KI1 KI2 + K21 K22) (sin2 _D - c°s2 _D )

(O-87)

(0-88)

The effect of each of the three types of singularities on the

elements of Y in Eq. (0-86) will now be investigated.

O. 14 Effect on VTA Guidance of Singularities at (t D -__t C) = N P

When (t D - t C)is very close to NP, both sin E M and sin(fD -

may be equated to _, a small quantity which reduces to zero when

(t D - tc) equals NP. From Eqs. (O-I0), (O-ll), and (O-12),

cosE M+ e cos Ep = (-1) N (i + e cos E D) (0-89)

fc )

X = (-i)N 3 Ngr (1+ e cosE D) (0-90)

When _ is small, the K factors are given by

3 N _ (I + e cosE D)
= (O-91)

Kll

2 (1 - e cos E D)

(1 - e2) 1/2 (_2
= (O-92)K12

1 + e cos E D

(1 - e2) 1/2 (_2

K21 = (0-93)

1 + e cos E D

= --1(_I)N+ 1 (1 - e cos E D) ( (0-94)K22 2
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K33
(1 - e2) I/2

(1 - e cos ED)2

(0-95)

The expressions for parameters B, C, and D are

B =Kll sin_D =
3 N =(l+e cosE D) sin_D

2 (i - e cosE D)

(0-96)

2 X 2 2 1/2
C = (B 2 sin 2 iD+ K33 cos iD)

JNTr (I + e cos E D)
_-- .=

2 (1 e cos ED )2

2 i/2
+ 4 (1 - e 2) cos iD]

[(i - e cosE D) 2 sin 2 _D sin2 iD

c (O-97)

2
D =K II sin_D cos_D

2 (I - e cos E D)

sin _D cos _D

(0-98)

Because C approache0 zero am (t D - t C) approaches N P, the

elements of the second row of _ tl_ Eq. (0-86) becomes infinite at the

singularity points. Consequently, it im not possible in the general

case to compute a finite VTA velocity correction when (t D - t C) is

equal to N P.

There are three special cases in which the vehicle can be made

to reach the proper destination by means of VTA guidance even though

a correction is contemplated at a time such that (t D - t C) = NP. The

first special case is the trivial one which occurs when 5r D- is parallel

to v R. Then no correction is required, and the change in the time of

arrival is proportional to the magnitude of 5r D-
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The second special case occurs when 6r D-

orbital velocity vector v D. Then

J sin _D

cos _D cos i D
6qD-

is parallel to the

(0-99)

_e w

I- 0/4B

K33 (D cos i D
-B

sin flD

6q D

cos flD cos iD

(0-100)

For (t D - tC) very close to N P, the expression for c_7 obtained from

Eq. (O-100) is

n K33 cos i D

c7} = B C (D sin _D - B2 cos flD ) 6qD (O-101)

It will now be shown that c , which ordinarily goes to infinity at
•

a singularity point because the demoninator factor C reduces to zero,

is equal to zero in this special case. c can be regarded as consisting

of three factors, n K33 cos iD/B, l/C, and (D sin _D - B2 cos _D ).

From Eqs. (0-95) and (0-96) it is apparent that, as long as neither

sin _D nor cos i D is zero, the first factor is non-zero and finite.

Eq. (0-97) indicates that C is an infinitesimal of order e. When terms
2

of higher order than e are neglected, the third factor may be treated

as follows:
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2
(D sin_D - B2 cos _D ) = (KII - K222) sin2 _D cos _D

+ KII KI2 (sin2 _D c°s2- CZD) sin _D

2 2
- (Kll sin _D - 2Kli KI2 sin_D cos_D

2 2
+ K22 cos _D ) cos_D

2
= KI1 K12 sin_D - K22 cos_D (O-I02)

2
is of order E and K22 is of order _, the third factor isSince K 122

of order _ Therefore, c7/ being proportional to the ratio of2
(D sin_D - B cos _D ) to C, is of order 6, and hence for the special
case

The component c_

c = o (O- lO3)

in Eq. (O-I00) is

n sin _D

c_ - 4 B 6qD

n (1 - e cos E D)

6 N=(1 + e cosE D)
6 qD

#

2
3NPav D

6 qD (0-104)

The VTA velocity correction vector is

c = _ ( 6qD
--v 2

3 NPav D

(O-105)

where u_ D is a unit vector in the _D direction.
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Eq. 00-105) can be compared with Eq. {O-13}, which is an

expression for the FTA velocity correction for the same special case

(i. e., 5r D is in the qD direction}. The magnitude of the correction
is the same for both FTA and VTA guidance; hence there is no propellant

saving when VTA guidance is used. A more interesting result is that

the FTA correction is applied in the qD direction, while the VTA cor-

rection is applied in the _D direction. It is surprising, to say the least,
that two corrections of the same magnitude but seemingly in different

directions achieve the objectives of the two guidance schemes. This

confusing state of affairs can be clarified by an investigation of the
orientation of the vector w.

w = KCD v R =

1

X sin E M

--n

1

sin (fD

kll v R + k12 v R
P q

k21 v R + k22 v R
P q

k33 v R
z

KllvR +K12 VR 1

P q

K21 v + K22 v R
Rp q

- fc ) ( K33 VR z )

(O-106)

When (t D - t C) is very nearly equal to N P,
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n
W =

-- E

_ 1jN' v R(

P

2 (1 - e cos E D)

(1 - e cos E D) E V n

_ q

6 N_ (1 + e cosE D)

(1 - e2) I/2
v R

(1 - e cosE D) 2

(O-107)

The only term inside the braces in Eq. (O-107) that contains the

infinitesimal e is the term representing the component of w in the qc

direction. Thus, when (t D - t C) is equal to N P, the w vector, although

infinite in magnitude, must lie in the plane normal to the qc-axis. But

the qc-axis and the qD-axis coincide when (t D - t C) equals N P. There-

fore, regardless of the orientation of the relative velocity vector the

noncritical vector w is perpendicular to the qD-axis when (t D - t C)

equals N P. The _D-axis has been defined as the axis normal to w and

lying in the reference trajectory plane. Since both the qD-axis and the

_D-axis are in the reference trajectory plane and perpendicular to w,

they must coincide, and consequently Eqs. (O-13) and (O-105) give the

identical velocity correction for this special case.

Eq. (O-107)indicates that the PC component of w changes sign

on each successive circuit of the focus. This would appear to indicate

that w rotates with a period that is twice the period P of the orbital

motion. The rotation of w has not been investigated further in this

study, but it is suggested as a possibly fruitful topic for future work in

the field.

The third special case is the two-dimensional case, in which
I

both 5z D and v R are equal to zero. Under these conditions, the v R
z

vector lies in the reference trajectory plane. In the critical-plane

coordinate system the _ D-axis lies along v R in the reference trajectory
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plane, the _D-axis is perpendicular to v R and in the reference trajectory

plane, and the 7/D-axis coincides with the z-axis. Since 5ZD- is taken
as zero, it follows that

5T/D = 0 (O-108)

For a correction at (t D - t C) equal to N P, it has been shown that the

_C-axis is the same as the qD-axis. Thus, the miss distance vector

6_p-must be parallei to the orbital velocity vector v D.

5p- = (SqD) UtjD (O-i09)

Eq. (O-109) is the defining characteristic of the second special case.

Therefore, both cases have the same solution for c v, which is given by

Eq. (O-105).

It is of interest to note the difference in initial hypotheses

between the second and the third special cases. In the second, the

predicted position variation vector 5_rD- is assumed to be parallel to

v D, and the orientation of the relative velocity vector v R is arbitrary.

In the third case, both 5r D- and v R lie in the reference trajectory

plane, but each may have any arbitrary orientation in that plane. _

The third case illustrates the pitfalls that may be encountered if

the mathematical model is over-simplified. If a preliminary guidance

study of a journey involving more than one circuit of the focus is based

on a two-dimensional model, that is, a model in which both v R and 5_r D-

are assumed to lie in the reference trajectory plane, the analysis will

indicate that a finite VTA correction can be computed when (t D - t C) = N P,

whereas a three-dimensional model shows that, in general, such a

computation is not possible.

O. 15 Effect on VTA Guidance of Singularities at (fD_LfC.) = (2 N-1)Tr
#

When (fD - fc ) = (2N-1)_r, k33 is the only element of KCD that

becomes infinite. The factors B and D in Eq. (0-86) are determined

in routine fashion, and factor C reduces to
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C = K33 X sin E M cos iD (O-110)

The matrix Y becomes

Y

0
w _ _ _ _ m m m _ _ m wm m

X sin E M B cos i D

(0-111)

A finite VTA velocity correction can be computed when (fD - fc )

= "(2 N - 1) _ except for the special case when the relative velocity vector

lies in the reference trajectory plane (that is, cos i D = 0).

The vector w corresponding to(f D - fc ) = (2N - l) 7r may be expressed

as

W _'_

kll v R + k12 v R
P q

k21 v R + k22 v R
P q

n K33

sin (fD - fc )
v R

Z

(O-112)

Only the z-component of w goes to infinity in the singularity condition.

Therefore, w is parallel to the z-axis, and, depending on the sign of v ,
-- R z

i C = 0 ° or 180 ° (O-113)

The _ C-axis is the z-axis, and the _C - 7}C plane is the reference tra-

jectory plane. Thus, the VTA correction vector must lie in the refer-

ence trajectory plane, regardless of the orientation of v R (as long as

cos i D _ 0).
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The equation for the VTA correction in the p q z coordinate

system is obtained by substituting Eq. (O-112) into Eq. (M-10).

kll

--eV=" k21

0

k12

k22

kll v R + k12 v R
P q

v R
Z

k21 v + k22 v R
Rp q

v R
z

0 0

6r D-

(0-114)

The z-component of the correction is zero, as required by the

fact that the z-axis is the noncritical axis. The elements in the first two

columns of the matrix in Eq. (O-114) are the same as the corresponding

elements in the matrix of the equation for the FTA correction.

O. 16 Effect on VTA Guidance of Singularities at X = 0

For the singularities at X equal to zero,

C = B sin(fD - fc ) sini D

The Y matrix is

#
Y =n

( °14B

m

K33 / D cos i D' -II
sin (fD - fc ) sin iD B 2

Parameters B and D are computed from Eq. (0-83) and (O-88),

respectively.

(0-115)

(0-116)
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A finite VTA correction can be determined when this type of

singularity occurs except for the special case when the relative velocity

vector is parallel to the z-axis (that is, sin iD = 0).

When X = O, the vector w can be written as

W "_

n

X sin E M

K11 v R + K12 v R \

K21 v Rp+ K22 v Rq /

k33 VR z )

(0-117)

Both w and w go to infinity, but w remains finite. Therefore, the w
p q z --

vector lies in the reference trajectory plane. The _C - _C plane is the

reference trajectory plane, the _/C-axis is the z-axis, and

i C = 90 ° (0-118)

The direction of w in the reference trajectory plane varies with N, the

number of circuits between t C and t D.

In the general case the correction component along the line of

nodes at t C (i. e., the _c-component of c w) is affected by only that

component of the miss distance lying along the line of nodes at t D.

Under conditions of the X = 0 singularity the _c-COmponent of the

correction is the only correction component in the reference trajectory

plane. Therefore, when X = 0, the entire correction component in the

reference trajectory plane is due to only that component of the miss

distance vector which lies along the line of nodes at t D. The component

of the miss distance that is in the reference trajectory plane but normal

to the line of nodes must be compensated completely by the component of

the correction that is parallel to the z-axis.
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The X = 0 singularity does not affect the out-of-plane motion of

the vehicle. The nature of the VTA correction will now be investigated

for the case when position variation 6r D is parallel to the z-axis. The

miss distance vector for this case is

sin i D

6z D (O-119)

From Eqs. (0-75) and (O-116), the correction is

c w = _ = _ 5 z D

c7/ k33

(0-120)

In vector form,

--vC = - k33 (6ZD-)U_Tc = - k33 (SZD-)--zU (O-121)

Thus, when X = 0, a position variation in the z direction calls for a VTA

correction in the z direction, and the motion in the reference trajectory

plane is not affected.

O. 17 Physical Interpretation of the Effect of the Singularities on VTA

Guidance

In the past three sections, it has been shown that, in general, it

is not possible to compute a finite VTA velocity correction when a singu-

larity of the first type occurs, i.e., when(t D - t C) = NP, and it is pos _

sible to compute a finite correction when either of the other two types of

singularities occurs, i.e., when(fD - fc )= (2 N - 1) r or whenX = 0.

This capability is in contrast with the FTA method of guidance, in which

no finite correction can generally be computed when any one of the three

types of singularities occurs.

The key to a physical understanding of the difference between

the two guidance concepts lies in the fact that FTA requires that the
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vehicle be at the specific point D at time tD, while VTA has the less

stringent requirement that the vehicle's position at t = tD be at any
point near D on a specified straight line which passes through D.

In Fig. O. 9, the relative velocity vector v R is not in the refer-

ence trajectory plane. If at time tC = (t D - NP} the vehicle is at some

arbitrary point C 1 near D, the required VTA correction is such that

the new trajectory contains the point C 1 and intersects the line of action

of vector v R at t = t D. In the general three-dimensional case, it is not

possible to find a trajectory which meets these requirements and at the

same time differs only slightly from the reference trajectory. There-

fore, the linear theory does not allow for the computation of a finite

VTA velocity correction when (t D - t C} = N P.

In Section O. 14, three special cases are considered. In the

first, the vehicle's predicted position at t = t D is D', which lies along

the line of action of v R. In this case the time at which a correction is

contemplated is immaterial, since no correction is needed.

In the second special case, the vehicle'sposition at t = t C is C 2,

Which lies along the line of action of the orbital velocity vector v D.

This case has already been taken up in Section O. 5 in connection with

FTA guidance. Irrespective of the nature of v R, the vehicle can be

made to arrive at D at time t D by applying a correction in the direction

of v D which causes the proper change in the period of the orbital motion.

The third special case occurs when the correction point C 1 and

the vector v R both lie in the reference trajectory plane. Then if v R

and v D are not collinear, the trajectory passingthrough C 1 must cross

the line of action of v R, and a small correction can be applied in the

direction of v D to ensure that such a crossing will take place at t = t D.

If v R and v D are collinear, the trajectory through C 1 does not cross

the line of action of VR, and it is not possible to compute a small VTA

velocity correction.
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The second type of singularity, for which (fD - fc } = (2 N - 1) r,

is due to the vehicle's component of motion normal to the reference tra-

jectory plane. If the z-component of 5r D can be effectively eliminated,

a finite velocity correction can be computed. The VTA guidance concept

provides a method of accomplishing this elimination as long as the rela-

tive velocity vector has a non-zero component in the z-direction.

In Fig. O. 10, the vehicle's actual trajectory prior to any cor-

rection will cause it to be at point D' at t = t D. The nominal destination

point is D. The requirement of VTA guidance is that the vehicle's posi-

tion at t D lie along the line through D parallel to v R. Since v R is as-

sumed to have a non-zero z-component, a line through D parallel to

v R must intersect the plane of the actual trajectory; the point of inter-

section is D" in the figure. The VTA guidance scheme computes the

velocity correction required to get the vehicle to D" at t = t D. Thus,

the correction is determined in such a way that the plane of the actual

trajectory is not altered; the correction vector lies in the plane of the

actual trajectory.

If 5z D = 0, the VTA correction computed by Eq. (O-114) is the

same as the FTA correction which would be computed under the same

circumstances. This is consistent with the argument that has just been

presented since, when 5z D = 0, the points D and D" coincide, and

hence VTA and FTA corrections are identical.

The third type of singularity, for which X = 0, involves a fairly

complex relationship between the eccentricity e and the eccentric

anomalies E C and E D. When the delicate balance among these three

quantities which must exist at X = 0 is upset by permitting some leeway

in the Choice of a time and place of arrival, it is reasonable to expect

that the singularity will vanish and a finite VTA correction can be

computed.

The X = 0 singularity is a characteristic of the motion in the

plane of the reference trajectory. It is possible to use FTA guidance

to compute a z-axis correction to a z-axis position variation even when

X = 0. Comparison of Eq. (O-121) with Eq. (K-48) indicates that VTA

and FTA systems yield the same z-axis correction to a z-axis position
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variation when X = 0. Thus, ifthe predicted position variation at the

destination is entirely in the z direction, the correction of smallest

magnitude that can be made at a time for which X = 0 is the FTA cor_

rection corresponding to that time, and there is no change in the time

of arrival. In this special case the component of position variation in the

reference trajectory plane is zero, hence there is no need for the

computation of the correction to become involved with the troublesome

aspects of the X = 0 condition. The VTA system automatically takes

this fact into consideration and provides a velocity correction which is

parallel to the z-axis.
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APPENDIX P

STATISTICAL THEORY

P. 1 Summary

The components of a multi-dimensional random variable are to be

estimated from a redundant set of measurements, associated with each

of which there is some uncertainty. The estimation technique known as

the method of maximum likelihood is used to make the estimate. The

equations of the maximum likelihood method are developed in matrix

form.

The concept of the equi-probability ellipsoid is introduced and is

used as a quantitative indication of the accuracy of the estimate.

P. 2 Introduction

The mathematical development of the method of maximum likelihood

presented in the following sections is patterned after the work of Shapiro, (43)

the primary difference being that in the case treated by Shapiro the likeli-

hood equations are nonlinear, while in the present application they are

linear] As a consequence, a closed-form solution is obtained in this ap-

pendix, whereas such a solution is not possible in the nonlinear case.

The method of maximum likelihood was originally developed by the

British statistician R.A. Fisher. A rigorous mathematical treatment of

the method is presented by Cram_r. (44)

P. 3 Mathematical Preliminaries

The number of measurements to be processed in the estimation pro-

cedure is designated as M. These measurements are collected in a single

M-dimensional column vector m. In the linear analysis the vector used in

the computations is 5rn, which consists of the variations of the components of

m from their reference values. The referencevalues are computed a priori.

The parameters to be estimated are collected in the column vector x.

The linear analysis leads to an estimate of the variation of each of the

components of x from its reference value. The variation inxis 5x. In

the general case, 6x is an N-dimensional vector, where N is any positive

integer. For the problem of orbit determination N is equal to six.
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For the i-th measurement the linear relationship between 5 m. and
1

5x can be expressed as the scalar product of the vector qi and the vector

6x.

T (P-l)6 m i = qi 5x

Cl i is a six-dimensional column vector whose components are the partial

derivatives of m i with respect to the components of x. The partial deriva-

tives are known functions of the parameter vector x and the time t i. In the

orbit determination problem, they can be expressed as functions of r. and--1

vi, the space vehicle's position and velocity vectors on the reference tr&-

jectory at time t i-

The composite vector 6m is obtained by extension of (P-1).

f

6,m I

5m =

6m M

*T
where the M-by-6 matrix Q

T.
!tl

_M T

is defined by

> ,6x = _T 6x (P-2)

T
111

o

• (P-3)
I

qM T

The transpose of _T is the 6-by-M matrix Q.

......... (P-4)Q= 1 qM

The observed values of the measurements differ from the true values

due to inaccuracies in instrumentation• If 6_n is the observed measure-

rnent variation vector, the measurement uncertainty vector u is defined by

u : 6_n- 6m (P-5)
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The covariance matrix of measurement uncertainties is

* T
U=u u (P-6)

Each component of u is assumed to have a Gaussian probability distribu-

tion with zero mean. The elements of U are determined a priori,

P. 4 Conditional Probability Density

After a set of measurements has been made, the vector 5 _ is known.

The problem then is to estimate 5xon the basis of the known 5_____. The

most probable value of 5x is that value for which the conditional probability

density p (Sx I 5 ____m)is a maximum, p (Sx I 5_n) is the probability density

of the vector 5x for the given measurement variation vector 5m.

Maximizing p (Sx I 5Zm) is not analytically feasible. However, the

conditional probability density p (SZ_m I 5x) can be maximized; this probability

density is known as the likelihood function L(5_x). The two conditional prob-

ability densities are related by the following equation:

L(5_x) = p(5____m 15x) = p(SxlS_n), p(SZ_m)

p (Sx)
(P-7)

p (6_n [ 5x) is the conditional probability of obtaining the 5m vector actually

observed when the vector 5x is specified, p(SZ_m)and p(sx)are a priori

probability densities.

The maximum likelihood estimate of 5x is obtained by setting to zero

the partial derivative of L (Sx)with respect to each component of x and then

solving the resulting likelihood equations for the vector 6 x___. The maximum

likelihood estimate of 5x is designated 5Ax._

From Equation (P-7)it is apparent that the maximum likelihood esti-

mate and the most probable value of 5x coincide if both p (5_n)and p (Sx)

are independent of 5x.

P. 5 The Maximum Likelihood Estimate

The observed measurement vector 6 m is the sum of a deterministic

function of 5 x and the M-dimensional random variable u.

6_n = _T 5x +u (P-8)
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Therefore, the likelihood function becomes

L(6x) = p(6_ J6_x): p(u J6x)

The probability density of u is independent of 6x.

L ( 6 x) = p (_u)

Then,

(P-9)

(P- 10)

p(u) represents the joint probability density of Ul, u2, ...... ,

u M. The equation for the M-dimensional joint probability density is

p(u) = P(Ul, ...... , UM)

1 1 T{/-I

=[(2_r, M {_,]1/2 exp(- -_ u u.) (P-11)

where ! u J is the determinant of U.

Since log [p(u)] is a monotonically increasing function of p (u), maxi-

mizing the logarithm yields the same value of 6x as maximizing p (u) itself.

The mathematics is simplified slightly if log [p(u)] is the function that is

maximized.

log[p(u)] =-

1 T_-I u2 u (P- 12)

The first term on the right-hand side of (P- 12) is a constant.

The partial derivative of log [p(u)] with respect to xi, one of the com-

ponents of x, is

8 log [p(__) ] 1 OuZ *-1

8 x i = - -2- 8xi U u + uw %-1 ax_i/ (P-13)

The matrix product u_T U- 1 __8u is a scalar quantity, which is equal to its

. 8 x i
transpose. Since U is a symmetric matrix, U-1 is also symmetric. Then
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T_-I 8u luT_-I 8____T_ 8u T _-I u (P-14)

/ \

u _ -___xi/ - _xi

When (P- 14) is substituted into (P- 13) and (P- 13) is equated to zero, the

result is

BuT _-1 u = 0 (P-15)

8x.
1

Since the observed measurement variation vector 6 m is independent

of the components of 6x,

8 u_.T 8 (6 _n -. 6m) T 8 (6m) T

8 x i 8 x i 8 x i
(P- 16)

The expression on the right side of (P-16)is the negative of the elements

composing the i-th row of the matrix Q, which is defined by Equation (P-4).

The six equations corresponding to i = I, .... , 6 in (P- 15) can be corn-

bined ihto a single matrix equation

* 1 o6Q _u= (P- 17)

In order to solve the set of simultaneous equations represented by

(P- 17) for the maximum likelihood estimate 6_, it is necessary to relate

u to 6Ax. Although (P-5) defines u as being the difference between 6_n and

6m, a new vector 6Am__will now be defined, and _u will be taken as the dif-

ference between 5 m and 5 Am. 6 mA is the maximum likelihood estimate of

the true measurement variation vector 6 m.

A
6r_ = _T 6x (P-18)

~ Amu = 6m- 6 = 6m- 6x (P-19)

(P- 17) and (P-19) are combined and solved for 5Ax.

6Ax= (_ _-1 _T)-I _ _-1 6_n (P-20)
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This is the matrix form of the equation for the maximum likelihood esti-

mate of 5x based on the observed measurements represented by 6m.

P. 6 Uncertainty in the Maximum Likelihood Estimate

Let _ be the difference between the estimate 5_Axand the true param-

eter variation vector 5 x. e represents the uncertainty in the maximum

likelihood estimate.

e = 6xA- 6x (P-21)

can be written as a function of the measurement uncertainty vector

u by performing a few simple matrix manipulations of (P-20).

* *-I_T **-QU 6Ax 1 --_= QU 6m

**-1
= Q U (6m + u) (P-22)

** 1 *_-1Q U _T (6_ - 6x) = Q u (P-23)

+e = (Q _j-1 _T)-I _ 1 u (P-24)

The covariance matrix E of the vector _ is

E = e e =(Q_j-1 Q lu u

=(Q (P-25)

P. 7 The E(tui-Probability Ellipsoid

For an N-dimensional parameter estimate, the joint probability

density of the components of the associated uncertainty vector e__is

1

P (_) = 1 / 2 exp (-
1 e_T _- 1 _)2- e (P-26)
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Some useful results are obtained by setting the quadratic form in the

argument of the exponential equal to a constant.

T _-1 k 2_ = (P-27)

(P-27) is the equation of an N-dimensional ellipsoid centered at e = ON.

For a specified value of k, the joint probability density of any point on

the ellipsoidal surface is

Pk (_) = 1 I- k2 I

Because the joint probability density is constant for all points on the sur-

face, the ellipsoid of (P-27)is known as the equi-probability ellipsoid.

The equi-probability ellipsoid is a convenient means of comparing

the accuracies obtained from various estimation methods. If for a given

k the ellipsoid obtained by one estimation technique lies wholly inside the

ellipsoid obtained by a second technique, the first technique obviously is

more "accurate than the second. If the ellipsoids derived from the two

estimation methods intersect, the issue is not so clear-cut; depending

on the distribution of the uncertainties in the measurements, either method

may lead to a more accurate estimate of the parameter vector in a specific

case.

If k 2 in Equation (P-27) is set equal to (N + 2), the resulting ellipsoid

is known as the ellipsoid of concentration. This particular ellipsoid has

the characteristic that, if the joint probability density is constant through-

out the volume of the ellipsoid and zero everywhere outside the surface

of the ellipsoid, the covariance matrix of the resulting distribution is the
,

same as the covariance matrix E of the original distribution.

t

Cramer has shown that there is a certain minimum size of the ellip-

soid of concentration. Estimation techniques are compared on the basis

of the ratios of the volumes of their ellipsoids of concentration to the

volume of the minimum ellipsoid. For a linear process with Gaussian

distribution of measurement uncertainties, the ellipsoid of concentration
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obtained by the method of maximum likelihood is equal to the minimum

ellipsoid; therefore, the maximum likelihood estimate is an optimal esti-

mate for such a case.

Another type of equi-probability ellipsoid that is frequently used in

error analysis is that for which k 2 = I. This type is known as the error

ellipsoid. All equi-probability ellipsoids are geometrically similar. The

ratio of the axis lengths of the ellipsoid of concentration to the corres-

ponding axis lengths of the error ellipsoid is (N + 2) I/2.

For a specified value of N, the probability that the uncertainty vector E

falls completely within the error ellipsoid is a constant. For N = 2, the

probability is 0. 393; for N = 3, the probability is 0. 199.

P.'8 Circular Probable Error and Spherical Probable Error

Another type of equi-probability ellipsoid that is used in error analyses

is the 50% probability ellipsoid, which is defined as the ellipsoid for which

the probability is 0.5 that the vector e__will lie totally within its boundaries.

This concept is particularly useful when N is equal to 2 or 3, for in these

cases it has a simple physical interpretation.

The volume of the N-dimensional equi-probability ellipsoid is

N 1/2

v = J kN '(P-29)

/"(2 N- +1)

where /_ ( ) represents the gamma function of the argument.

For N = 2 the ellipsoid reduces to an ellipse, and its area is

A = 71"k 2 1/2 (P-30)

The value of k for the 50% probability ellipse is 1. 1774.

50% probability ellipse is

A0.5 = _r(1.1774)2 [_,[ 1/2

The area of the

(P-31)

When the measurements are carefully chosen, it is usually possible to

obtain an ellipse whose two major axes are nearly equal in length. Then
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the ellipse closely resembles a circle. The radius of the circle with the

same area as that given by (P-31) is known as the circular probable error

(CPE). The CPE is frequently used as an accuracy criterion for two-

dimensional parameter vectors. From (P-31),

CPE = 1.1774 [El 1/4 (P-32)

A similar criterion can be derived for N = 3. The volume of the

three-dimensional equi-probability ellipsoid is

= 4 k 3 1/2v (P-33)

For the 50% probability ellipsoid, k = 1. 5382.

=4
V0. 5 37r(1.5382)3 lEll/2 (P- 34)

where V0.5 is the volume of the 50% probability ellipsoid. When the axes

of the ellipsoid are roughly equal in length, the spherical probable error

(SPE) is defined as the radius of the sphere whose volume is equal to V0.5"

SPE = 1 53821". Ell/6 (P-35)

The numerical values used in the last two sections have been obtained

from Burington and May (45) and from Locke.
(46)
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